

Crisp County Power Commission 202 S. 7th Street Cordele, Georgia 31015

2022 SEMI-ANNUAL GROUNDWATER MONITORING REPORT

CRISP COUNTY POWER COMMISSION PLANT CRISP ASH POND Warwick, Georgia

Prepared by

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

July 2022

CERTIFICATION BY QUALIFIED GROUNDWATER SCIENTIST

I certify that this Annual Groundwater Monitoring Report meets the requirements of Section 40 C.F.R. §257 of the Federal Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule (40 C.F.R. §257) and the Georgia EPD Solid Waste Management Rule for Coal Combustion Residuals (391-3-4-.10). The Annual Groundwater Monitoring Report includes statistical methods and narrative description appropriate for evaluating the groundwater monitoring data for the CCR management area.

JIMMY WHITMER

Printed Name of Qualified Groundwater Scientist

PG001302

Registration No.

Georgia

Registration State

J7WHL

07/29/2022

Stamp/Signature/Date

TABLE OF CONTENTS

CERT	TFICA	TION BY QUALIFIED GROUNDWATER SCIENTIST			
		/E SUMMARY			
1.0	INT	RODUCTION	1		
1.0	1.1	Overview			
	1.2	Site History			
	1.3	Geologic and Hydrogeologic Setting			
	1.4	Groundwater Monitoring Well Network			
2.0	GRO	OUNDWATER SAMPLING AND LABORATORY ANALYSIS			
	RES	SULTS			
	2.1	Groundwater Sampling and Laboratory Analysis	5		
	2.2	Groundwater Monitoring Results	6		
3.0	STA	ATISTICAL DATA ANALYSIS PROCEDURES	7		
	3.1	Appendix III Statistical Methods	7		
	3.2	Appendix IV Statistical Methods	8		
	3.3	Evaluation of SSLs for Appendix IV Constituents	9		
4.0	STA	ATISTICAL ANALYSIS RESULTS	10		
5.0	FU	TURE GROUNDWATER MONITORING PROGRAM	11		
6.0	REI	FERENCES	12		
		LIST OF TABLES			
Table	e 1	Monitoring Well Network Summary			
Table	2	Groundwater Elevation Summary			
Table	2	Hydraulic Gradient and Groundwater Flow Velocity Calculations			
Table	÷ 4	Appendix III Analytical Data Summary – Sampling Performed on 26, 2022	April		
Table	5	Appendix IV Analytical Data Summary – Sampling Performed on Ap 26, 2022			
Table	e 6	Evaluation of SSIs for Appendix III Constituents			

Table 7 Summary of Basic Groundwater Statistics and GWPS for Appendix IV
Constituents

Table 8 Evaluation of SSLs for Appendix IV Constituents

LIST OF FIGURES

Figure 1	Groundwater Monitoring Well Location Map
Figure 2	Potentiometric Surface Map – April 26, 2022

LIST OF APPENDICES

Appendix A	Well Inspection Forms
Appendix B	Field Groundwater Sampling Forms
Appendix C	Laboratory Analytical Reports
Appendix D	Statistical Calculations and Time-series Graphs

LIST OF ACRONYMS AND ABBREVIATIONS

CCPC Crisp County Power Commission

CCR Coal Combustion Residuals
C.F.R. Code of Federal Regulations
cm/sec Centimeters per Second

DNR Department of Natural Resources

DO Dissolved Oxygen ft/day Feet per Day ft/ft Feet per Foot ft/year Feet per Year

GA EPD Georgia Environmental Protection Division

GWPS Groundwater Protection Standard
Kh Horizontal Hydraulic Conductivity
MCL Maximum Contaminant Level

mg/L Milligram per Liter

MW Megawatt

NTU Nephelometric Turbidity Units
ORP Oxidation Reduction Potential

PE Professional Engineer

QA/QC Quality Assurance/Quality Control

SESD Science and Ecosystem Support Division

SOP Standard Operating Procedure
SSI Statistically Significant Increase
SSL Statistically Significant Level

SU Standard Unit

USEPA United States Environmental Protection Agency

UTL Upper Tolerance Limit

EXECUTIVE SUMMARY

Crisp County Power Commission (CCPC) has been monitoring the groundwater quality at the Plant Crisp Ash Pond (ash pond) in accordance with the United States Environmental Protection Agency (USEPA) Coal Combustion Residuals (CCR) Rule [40 Code of Federal Regulations (C.F.R.) Part 257, Subpart D] and the Georgia Environmental Protection Division (GA EPD) Rule for CCR (391-3-4-.10). The timeline and status of the monitoring program and the relevant findings and conclusions derived for the reporting period (i.e., between January and June 2022) are summarized as follows:

- In compliance with 40 C.F.R. §257.94, a groundwater detection monitoring program was conducted between February 2017 and September 2017.
- In compliance with 40 C.F.R. §257.95(a), CCPC initiated an assessment monitoring program in March 2018. The ash pond has been monitored under the assessment monitoring program from March 2018 through the current reporting period.
- Pursuant to Rule 40 C.F.R. 257.95 and 391-3-4-.10(6), Statistically Significant Increases (SSIs) above background levels were identified for Appendix III¹ constituents. No Statistically Significant Levels (SSLs) above the Groundwater Protection Standards were identified for Appendix IV² constituents during the reporting period. A summary of statistically significant values of Appendix III and Appendix IV parameters is provided in the table below.

Appendix III Parameter	April 2022
Boron	MW-D1, MW-D2, MW-D3
Calcium	MW-D1, MW-D2
Fluoride	MW-D3
Sulfate	MW-D1, MW-D2, MW-D3
Total Dissolved Solids (TDS)	MW-D1, MW-D2, MW-D3
Appendix IV Parameter ³	None

¹ Boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)

² Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, and radium 226 + 228

³ A state statistically significant level (SSL)-related constituent is determined by comparing the confidence intervals developed to either the constituent's MCL, if available, or the calculated background interwell prediction limit. A federal SSL-related constituent is determined by comparing the confidence intervals developed to either the constituent's MCL, if available, the USEPA RSL, if no MCL is available, or the calculated background interwell prediction limit.

Geosyntec consultants

• Pursuant to 40 C.F.R. §257.95(d)(1) and GA EPD CCR Rule, assessment monitoring will continue at the ash pond. The next assessment report will be submitted to the GA EPD in January 2023.

1.0 INTRODUCTION

1.1 Overview

Geosyntec Consultants (Geosyntec) of Kennesaw, Georgia, at the request of Crisp County Power Commission (CCPC), prepared this 2022 Semi-Annual Groundwater Monitoring Report for the ash pond located at CCPC's Plant Crisp (the Site). Plant Crisp is located in Warwick, Georgia, on the southern end of Lake Blackshear (**Figure 1**). CCPC installed a groundwater monitoring well network in February 2017 in compliance with the requirements of the 40 Code of Federal Regulations (C.F.R.) §257.91 and the subsequently enacted Section 391-3-4-.10(6) of the Georgia Environmental Protection Division (GA EPD) Coal Combustion Residuals (CCR) Rule (eff. March 28, 2018).

A groundwater detection monitoring program was conducted between February and September 2017 in compliance with the requirements of the 40 C.F.R. §257.94. The first Annual Groundwater Monitoring Report summarizing the results of detection groundwater monitoring activities was prepared in January 2018 [Geosyntec, 2018]. In compliance with 40 C.F.R. §257.95(a), CCPC initiated an assessment monitoring program for the ash pond in March 2018. The assessment monitoring for this reporting period consisted of performing a semi-annual monitoring event in April 2022. The April 2022 assessment monitoring event was performed for constituents listed in Appendix III to part §257 (referred herein as Appendix III constituents) and Appendix IV to part §257 (referred herein as Appendix IV constituents) (40 C.F.R. §257.95(b)). The groundwater monitoring and statistical analyses were performed consistent with the Groundwater Monitoring and Statistical Analysis Plan prepared for the ash pond in October 2017 and revised in April 2020.

The purpose of this report is to present a summary of the April 2022 groundwater assessment monitoring activities and associated laboratory and statistical analysis results. The report has been prepared to meet the semi-annual reporting requirements of GA EPD CCR Rule $391-3-4-.10(6)(c)^4$.

In summary, the April 2022 sampling event detected concentrations of 40 C.F.R. §257, Appendix IV constituents, but at concentrations below their respective United States Environmental Protection Agency's (USEPA's) maximum contaminant levels (MCLs).

⁴ The semi-annual groundwater monitoring report is a state requirement under DNR Rule 391-3-

^{4.10(6)(}c): The owner or operator of a CCR unit must submit a semi-annual report to the Division to coincide with the semi-annual sampling event. A qualified groundwater scientist must certify the report.

1.2 Site History

Plant Crisp is a dual-fuel (coal and natural gas) electrical generation facility, with a 12.5megawatt (MW) capacity coal-fired unit and 5 MW capacity natural gas combustion turbine. The byproducts of power generation from the combustion of coal (commonly referred to as CCR) at Plant Crisp included mainly fly ash and bottom ash. The CCR was disposed into a 6.5-acre ash pond located within the plant property using wet sluicing method. The ash pond was constructed in the mid-1970s, as an unlined pond [CDM Smith, 2014], and started to receive sluiced ash in 1976. The coal burning and resulting ash disposal was conducted until August 2015. The coal burn unit was briefly re-activated in December 2016 to eliminate an existing small coal supply. The last burning of coal took place on March 22, 2017. In October 2016, CCPC submitted notification of closure by removal in accordance with 40 C.F.R. §257. The original schedule for closure would have removed CCR by February 2018, however, Georgia Department of Natural Resources (DNR) CCR management regulations were issued in November 2016, DNR Rule 391-3-4-.07(5), after the initial closure plan. DNR Rule 391-3-4-.07(5) required GA EPD's approval of CCR management plans for the receiving landfill. GA EPD approved the CCR management plan for the receiving landfill on March 28, 2019. On November 19, 2018, CCPC submitted a CCR permit application for the existing impoundment and closure of the ash pond by removal in accordance with 40 C.F.R. §257.102(c) and the GA EPD CCR Rule 391-3-4-.10 and other GA EPD regulations as applicable. GA EPD issued a permit on August 17, 2020 authorizing the handling of CCR and closure through removal of the ash pond. CCPC is decommissioning the ash pond in accordance with the permit, federal, and state requirements and the CCR management plan.

The electrical generation facility, ash pond, and hydroelectric dam are located on approximately 100 acres of CCPC property near Lake Blackshear and the Flint River (**Figure 1**). The ash pond has embankments on the western and partially southern and northern sides. The maximum embankment height is on the west end and is approximately 22 feet [Rizzo Associates, 2015]. The ash pond was classified as a low hazard unit during the USEPA's coal combustion residuals impoundment assessment, dated February 2014 and conducted by CDM Smith [CDM Smith, 2014].

1.3 Geologic and Hydrogeologic Setting

CCPC is located in the Coastal Plain Physiographic Province of Georgia, which is generally characterized by gently rolling to nearly flat topography. The Coastal Plain Physiographic Province of Georgia is characterized by Late Cretaceous and Cenozoic sedimentary rocks and sediments. Based on the Geologic Map of Georgia [Georgia Department of Natural Resources, 1997], the Site is underlain by Quaternary-aged stream alluvium and undifferentiated terrace deposits underlain by residual soil derived by the

weathering of Eocene-aged limestone. Beneath the residuum is Eocene-aged limestone (the Ocala Limestone) that dips gently to the southeast and generally thicken in that direction [Hicks et al, 1987]. The Ocala Limestone comprises part of the Upper Floridan aquifer, which is underlain by low permeability zones within the Lisbon Formation (argillaceous limestone). Subsurface investigations at the Site generally describe the surface geology as embankment fill, alluvium, residuum and limestone bedrock [ND&T, 1994, Rizzo, 2015, Geosyntec, 2019].

The uppermost aquifer at the Site is the unconfined groundwater aquifer that occurs in the alluvium and some upper portions of the residuum. The alluvial sediments consist of alternating layers of clay, silty sand, silty clayey sand, and some gravel (SM, SM-SC). While most of the of the residuum consists of clays and calcareous clay (marl) with limestone fragments, there may be sandy clay and gravelly clay lenses that could act along with the overlying alluvium as part of the uppermost aquifer. Based on field observations (increasing clay content with depth in the residuum and increasing blow counts with depth), the hydraulic conductivity of the residuum is expected to decline with depth. As such, the lower part of the residuum is likely a confining unit and represents the lower boundary of the uppermost aquifer. Recharge to the uppermost aquifer is from infiltration of precipitation. In March 2019, Geosyntec performed slug testing in four monitoring wells to estimate horizontal hydraulic conductivity (K_h) of the uppermost aquifer. Based on the slug testing results, the geometric mean of the Kh in the uppermost aquifer was estimated as 1.44×10^{-4} centimeter per second (cm/sec) [0.41 feet per day (ft/day)]. This value is similar to the K_h estimated for the alluvium and residuum during previous investigations.

Under natural conditions, the water table surface is a subdued reflection of the topography, with groundwater generally flowing from southeast to northwest from the higher elevations to lower elevations toward the Flint River. The movement of groundwater in the uppermost aquifer can be characterized as porous media flow.

1.4 Groundwater Monitoring Well Network

In accordance with 40 C.F.R. §257.91, a groundwater monitoring system was installed that (1) consists of a sufficient number of wells; (2) is installed at appropriate locations and depths to yield groundwater samples from the uppermost aquifer; and (3) represents the groundwater quality both upgradient of the units (i.e., background conditions) and passing the waste boundary of the units. The number, spacing, and depths of the groundwater monitoring wells were selected based on the characterization of site-specific hydrogeologic conditions. The well network was certified by a professional engineer (PE) on June 14, 2017; the certification is maintained in the facility's Operating Record. Well construction diagrams of the monitoring wells were included in the January 2018 Annual

Geosyntec consultants

Groundwater Monitoring Report [Geosyntec, 2018] as well as the Groundwater Monitoring and Statistical Analysis Plan [Geosyntec, 2020]. The certified groundwater monitoring well network includes one monitoring well (MW-U1) located upgradient of the ash pond, representing background groundwater conditions, and three monitoring wells (MW-D1, MW-D2, and MW-D3) located downgradient of the ash pond. The locations of the monitoring wells are shown on **Figure 1** and well construction details are provided in **Table 1**. The monitoring wells are screened in the uppermost aquifer underlying the ash pond, which occurs in the alluvium and some upper portions of the residuum.

CCPC does not currently plan to expand the certified monitoring well network. During the monitoring period: (i) all wells were functioning properly; (ii) there were no dry wells; and (iii) no additional well installation or abandonment was conducted. Inspection of certified well network by a qualified groundwater scientist was performed in April 2022 (Appendix A). No corrective action is needed for any of the four monitoring wells.

2.0 GROUNDWATER SAMPLING AND LABORATORY ANALYSIS RESULTS

2.1 Groundwater Sampling and Laboratory Analysis

The groundwater assessment monitoring event for this reporting period was conducted on April 26, 2022. The groundwater samples were collected in accordance with the USEPA Science and Ecosystem Support Division (SESD) Standard Operating Procedure (SOP No. SESDPROC-301-R4) [USEPA, Athens, Georgia, 2017]. Prior to sampling, depth to groundwater and total well depth were measured for each monitoring well using an electrical water level indicator. The water level indicator was cleaned between wells following the decontamination procedure listed under SESDPROC-205-R3 [USEPA, Athens, Georgia, 2015]. Depth to groundwater data and groundwater elevations are summarized in **Table 2**. The groundwater elevation data was used to prepare a potentiometric surface map, provided as **Figure 2**. Based on the potentiometric surface map, groundwater flow direction is from southeast towards northwest with a hydraulic gradient of approximately 0.010 feet per foot (ft/ft) (**Table 3**). The average horizontal groundwater flow velocity was calculated using Darcy's equation as approximately 7.8 feet per year (ft/year) (**Table 3**).

Groundwater sampling was performed using a low-flow sampling method. To assess that the samples collected were representative of the groundwater in the aquifer, field water quality parameters were measured during purging using a Horiba U-52 water quality meter. These parameters include temperature, pH, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO). Measurements were taken within an enclosed flow-through cell to minimize effects of contact with air. Turbidity was measured using Hach 2100P turbidity meter. Purging was considered complete when the following stabilization criteria were met for at least three consecutive measurements (as defined by USEPA SESD SOP No. SESDPROC-301-R4):

- pH \pm 0.1 Standard Units (SU);
- Conductivity ± 5%;
- Dissolved oxygen ± 0.2 milligrams per liter (mg/L) or $\pm 10\%$ change in saturation, whichever is greater;
- Turbidity measured less than 10 nephelometric turbidity units (NTU); and
- ORP \pm 20 mV.

The groundwater samples were collected in laboratory-provided containers. Following sampling, the bottles were sealed, labeled, packed in ice, and shipped under chain-of-custody protocol to Eurofins Test America Laboratories in Pensacola, FL, a certified laboratory pursuant to the Georgia State Program. The chain-of-custody procedures were conducted in accordance with SESDPROC-005-R2 [USEPA, Athens, Georgia 2013]. The groundwater samples were analyzed for Appendix III constituents (i.e., boron, calcium, chloride, fluoride, sulfate, total dissolved solids) and Appendix IV constituents (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, radium 226 and 228 combined, selenium, and thallium). The metal constituents were analyzed as total recoverable as the samples were not field-filtered. Radium was analyzed at Eurofins Test America Laboratories in St. Louis, MO. Groundwater pH, also an Appendix III constituent, was measured in the field using a Horiba water quality meter.

Field duplicate sample (DUP-18) was collected from monitoring well MW-D1 for quality assurance/quality control (QA/QC). The duplicate sample was collected in laboratory-provided bottles and submitted under the same chain-of-custody as the primary samples for analysis of the same parameters by Eurofins Test America laboratories.

2.2 **Groundwater Monitoring Results**

Laboratory analytical results for Appendix III constituents from the April 2022 monitoring event are summarized in **Table 4**. Appendix III constituents were detected in the upgradient and downgradient monitoring well locations.

Laboratory analytical results for Appendix IV constituents are summarized in **Table 5**. Low levels of Appendix IV constituents (, barium, chromium, fluoride, molybdenum, and radium 226 and 228 combined) were detected in the downgradient monitoring wells. Similarly, low levels of arsenic, barium, chromium, fluoride, and radium 226 and 228 combined were detected in the background/upgradient monitoring well MW-U1. **Table 5** shows that the detected concentrations of Appendix IV constituents are below their respective USEPA's MCLs. Low level Appendix IV constituents detected during the April 2022 monitoring event can be naturally occurring as some of these constituents were also detected at low concentrations in the background well. Laboratory reports are included in **Appendix C**.

The April 2022 assessment monitoring results were statistically evaluated in accordance with 40 C.F.R. §257.93(g). The statistical analysis results are discussed in Section 3.

3.0 STATISTICAL DATA ANALYSIS PROCEDURES

Statistical analysis of the groundwater data collected during the assessment monitoring event was performed in accordance with the methods listed in the Groundwater Monitoring and Statistical Analysis Plan [Geosyntec, 2020b]. The statistical methods meet the requirements of the methods specified in 40 C.F.R. §257.93(f) (1) through (5) and the performance standards specified in 40 C.F.R. §257.93(g). Statistical analysis was performed using SanitasTM v.9.6.05 software for Appendix III and Appendix IV constituents. SanitasTM is a decision-support software package, that incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations and guidance as recommended in the USEPA document Statistical Analysis of Groundwater Data at RCRA Facilities Unified Guidance (Unified Guidance) (USEPA, 2009).

The primary objectives of the statistical data analysis conducted during this reporting period are:

- (i) To assess if Appendix III constituents have returned to background levels.
- (ii) To calculate statistically derived background concentration for each Appendix IV constituent. The statistically derived background concentration will be used as Groundwater Protection Standard (GWPS) when the statistically derived background concentration is higher than the MCL (if an MCL has been established under 40 C.F.R. §161.62 and 40 C.F.R. §141.66) or the standard listed under 40 C.F.R. §257.95 (h)(2) for those constituents without an established MCL.
- (iii) To construct a lower confidence interval for each constituent at each downgradient well and compare the lower confidence interval to an established GWPS and determine whether a statistically significant level (SSL) is present at any of the downgradient monitoring wells.

Detailed statistical methods used for Appendix III and Appendix IV constituents are discussed in Sections 3.1 and 3.2.

3.1 Appendix III Statistical Methods

Based on guidance from GA EPD, statistical tests used to evaluate the groundwater monitoring data consist of interwell prediction limits (PLs). Interwell PLs pool upgradient well data to establish a background limit for an individual constituent, and the most recent sample from each downgradient well is compared to the background limit to assess whether there are significant statistical increases (SSIs). An "initial exceedance" occurs

when an Appendix III constituent reported in the groundwater of a downgradient compliance monitoring well exceeds the constituent's associated PL.

3.2 **Appendix IV Statistical Methods**

As a first step in developing the GWPS, groundwater data from the background well were screened for potential outlier (anomalous) data. In addition to visual inspection using time-series plots, statistical methods, such as the USEPA 1989 Outlier Screening method, were used to identify outliers in the groundwater data (when the data was normally distributed). Tukey's Outlier Screening method was used when background well data was not normally distributed. Although outliers were detected, they were not removed from the statistical analysis due to: (i) a large number of non-detects (also referred as censored data in the USEPA Unified Guidance) in the data set; and (ii) the USEPA Unified Guidance recommendation on screening data only if the source of the outlier is known. Data distribution was checked using Shapiro Wilk method at 99% confidence level. This method is appropriate for a sample size of less than 50. For statistical data analysis, non-detect laboratory results were replaced with their reporting limit in accordance with the USEPA Unified Guidance recommendation [USEPA, 2009].

The USEPA Unified Guidance recommends utilizing upper tolerance limits (UTL) from the background well to establish background concentrations. In addition, the CCR Rule lists the UTL method, calculated using data from the background well, as one of the methods acceptable for CCR data analysis [40 C.F.R. §257.93(f)(3)]. As a result, the GWPSs for the site were developed utilizing the UTL method and generally consisted of the following procedures:

- Parametric tolerance limits (95% coverage and 95% confidence) were constructed when the background data followed a normal or transformed-normal distribution.
- Non-parametric tolerance limits were calculated for data sets with greater than 50% non-detect values, and for data sets which do not follow a normal or transformed-normal distribution.
- The UTL was calculated for each constituent using background well data collected during the eight detection monitoring events and the assessment monitoring events conducted to date. As described in 40 C.F.R. §257.95(h), which was adopted into the GA EPD Rules for Solid Waste Management 391-3-4-.10 on February 22, 2022, the GWPS is:
 - (1) the maximum contaminant level (MCL) established under 40 C.F.R. §141.62 and §141.66.

- (2) where an MCL has not been established:
 - (i) Cobalt 0.006 mg/L;
 - (ii) Lead 0.015 mg/L;
 - (iii) Lithium 0.040 mg/L; and
 - (iv) Molybdenum 0.100 mg/L.
- (3) the UTL computed from background well data for constituents where the UTL is higher than the MCL or rule-specified GWPS.

3.3 Evaluation of SSLs for Appendix IV Constituents

The USEPA Unified Guidance [USEPA, 2009] recommends utilizing the lower confidence interval from a downgradient well along with the double quantification rule to evaluate SSLs. A 99% lower confidence interval was constructed for each constituent at each downgradient well and the double quantification rule was used to evaluate SSLs. Under this rule, an SSL can be concluded if the lower confidence limit is higher than the GWPS.

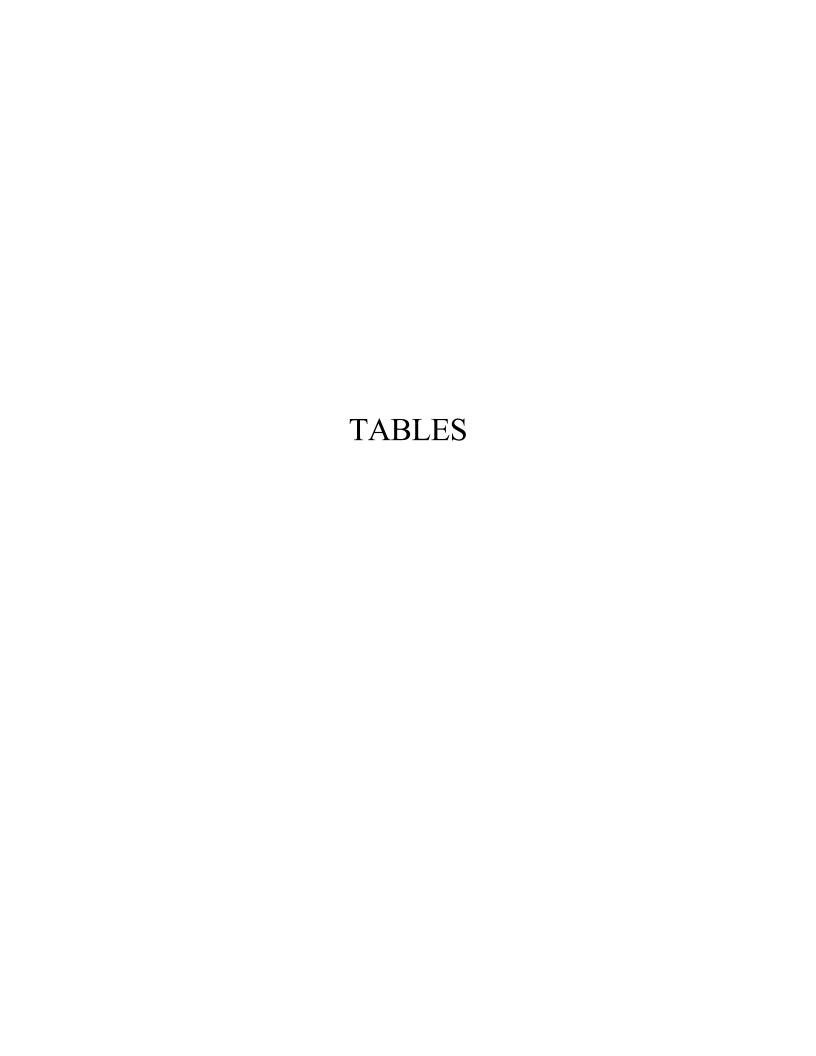
4.0 STATISTICAL ANALYSIS RESULTS

Appendix III statistical analyses results identified SSIs for the following constituents: boron, calcium, fluoride, sulfate, and TDS. The PL for each constituent and the list of wells with SSIs are summarized in **Table 6**. Because groundwater conditions have not returned to background, assessment monitoring should continue pursuant to 40 C.F.R. §257.95(d)(1) and GA EPD CCR Rule.

The statistical analysis results for Appendix IV constituents are summarized in **Table 7**, which shows the (i) ratio of non-detects to total number of samples; (ii) basic statistics for each constituent in a monitoring well such as minimum and maximum; (iii) UTL of each constituent constructed based on the background well data; (iv) an MCL value for the constituent (if available) established under 40 C.F.R. §161.62 and 40 C.F.R. §141.66 or the standard listed under 40 C.F.R. §257.95(h)(2); and (v) the selected GWPS for each constituent.

Table 8 shows the lower confidence limit constructed for each constituent at each downgradient well and the results of comparison between the lower confidence limit and the selected GWPS to evaluate if there are any SSLs. Comparison of the lower confidence limit to the selected GWPS revealed no SSLs during the reporting period. The SanitasTM statistical calculations and time-series graphs for each constituent are provided in **Appendix D**.

5.0 FUTURE GROUNDWATER MONITORING PROGRAM


Data collected during the assessment monitoring event indicated that Appendix IV constituents detected in the downgradient monitoring wells were below their respective GWPS. Pursuant to the CCR Rule 40 C.F.R. §257.95(d)(1) and GA EPD's CCR Rules, CCPC will continue groundwater sampling semi-annually for Appendix III and Appendix IV constituents. The next semi-annual groundwater monitoring report will be submitted by January 31, 2023 pursuant to the Georgia EPD CCR Rule 391-3-4-.10(6)(c).

6.0 REFERENCES

- CDM Smith, (2014). "Assessment of Dam Safety of Coal Combustion Surface Impoundments Final Report: Crisp County Power Commission Plant Crisp Warwick, Georgia." Prepared for U.S. Environmental Protection Agency Washington, D.C., Rev. 1, February 2014.
- Geologic Map of Georgia, (1976, Reprinted in 1997), Georgia Department of Natural Resources, Geologic and Water Resources Division, Georgia Geologic Survey.
- Geosyntec (2018). Annual Groundwater Monitoring Report. Plant Crisp Ash Pond. Prepared for Crisp County Power Commission, January 2018.
- Geosyntec (2019). Supplemental Hydrogeologic Assessment Report for Plant Crisp Ash Pond Revision 1, Crisp County Power Commission. December 2019.
- Geosyntec (2020a). 2020 Semi-annual Groundwater Monitoring Report. Crisp County Power Commission, Plant Crisp Ash Pond. July 2020.
- Geosyntec (2020b). Groundwater Monitoring and Statistical Analysis Plan. Crisp County Power Commission, Plant Crisp Ash Pond. April 2020.
- Hicks, D.W., Gill, H.E., and Longsworth S.A. (1987). Hydrogeology, Chemical Quality, and Availability of Ground Water in the Upper Floridan Aquifer, Albany Area, Georgia (USGS).
- ND&T (1994). Report of Geotechnical Investigation, Lake Blackshear Dam Repairs, November 1994.
- Rizzo Associates. (2015). "Dam Safety Assessment Report Plant Crisp Coal Combustion Waste Impoundment." Submitted to Crisp County Power Commission, 14-5232, Rev. 0, January 2015.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March 2009.
- USEPA (2013). Science and Ecosystem Support Division (SESD, Athens, Georgia) Sample and Evidence Management (SESDPROC-005-R2).
- USEPA (2015). Science and Ecosystem Support Division (SESD, Athens, Georgia) Field Equipment Cleaning and Decontamination (SESDPROC-205-R3).

Geosyntec consultants

USEPA (2017). Science and Ecosystem Support Division (SESD, Athens, Georgia) Groundwater Sampling Operating Procedure (SOP) (SESDPROC-301-R4).

Table 1. Monitoring Well Network Summary Crisp County Power Commission Plant Crisp Ash Pond

Well ID	Hydraulic Location	Installation Date	Well Depth (ft, BTOC)	Easting ⁽¹⁾	Northing ⁽¹⁾	TOC Elevation ⁽²⁾ (ft, MSL)	Screen Interval Elevation ⁽²⁾ (ft, MSL)
MW-D1	Downgradient	2/22/2017	22.86	2365315.12	670708.47	241.77	218.85-228.85
MW-D2	Downgradient	2/21/2017	22.6	2365308.73	671291.61	232.66	209.64-219.64
MW-D3	Downgradient	2/22/2017	22.7	2365715.53	671291.07	233.78	210.52-220.52
MW-U1	Upgradient	2/23/2017	37.4	2366420.55	669996.79	249.52	212.78-222.78

Notes:

ft = feet

MSL = above mean sea level.

TOC = Top of casing

BTOC = Below top of casing

The easting, northing, and TOC elevations were obtained from a revised survey performed by J.B. Faircloth & Associates, P.C. on 26 November 2019.

^{(1):} The easting and northing coordinates in North American Datum (NAD) 1983, State Plane, Georgia-West, feet.

^{(2):} Elevations referenced to the North American Vertical Datum of 1988 (NAVD88).

Table 2. Groundwater Elevation Summary Crisp County Power Commission Plant Crisp Ash Pond

	TOC Elevation	4/26/2022				
Well ID	(ft, MSL)	Depth to Groundwater (ft, BTOC)	Groundwater Elevation ⁽¹⁾ (ft, MSL)			
MW-D1	241.77	15.40	226.37			
MW-D2	232.66	12.53	220.13			
MW-D3	233.78	7.93	225.85			
MW-U1	249.52	11.55	237.97			
Lake Blackshear			236.98 ⁽²⁾			

Notes:

ft = feet

MSL = mean sea level.

TOC = Top of casing

BTOC = Below top of casing

-- = not applicable

^{(1):} Elevations referenced to the North American Vertical Datum of 1988 (NAVD88).

^{(2):} Surface water elevation on 4/26/2022 at 12:00 PM.

Table 3. Hydraulic Gradient and Groundwater Flow Velocity Calculations Crisp County Power Commission Plant Crisp Ash Pond

Well Gauging		Hydra	ulic Gradient		Groundwater Flow Velocity			
Date	h ₁ (ft)	h ₂ (ft)	Δl (ft)	$\Delta h/\Delta l$ (ft/ft)	K _h (ft/day)	ηе	V (ft/year) ¹	
4/26/2021	237.97	220.13	1,710	0.010	0.41	0.20	7.8	

Notes:

ft = feet

ft/day = feet per day

ft/ft = feet per foot

ft/year = feet per year

h1 and h2 = groundwater elevation for MW-U1 and MW-D2, respectively.

 $\Delta h/\Delta l = hydraulic gradient$

 K_h = hydraulic conductivity geometric mean of 0.41 ft/day estimated using slug testing in monitoring wells.

 Δl = distance between MW-U1 and MW-D2.

ηe = effective porosity (estimated based on fine-grained sand aquifer) (Kresic, 2007)

V = groundwater flow velocity

⁽¹⁾ Groundwater flow velocity equation: $V = [K_h * (\Delta h/\Delta l)] / \eta e$

Table 4. Appendix III Analytical Data Summary - Sampling Performed on April 26, 2022 Crisp County Power Commission Plant Crisp Ash Pond

Appendix III to 40 C.F.R. Part 257 - Constituents for Detection Monitoring

Constitution	WT .*4	3.50x(I)	(2)	Upgradient Well ID		Downgra	idient Well ID	
Constituent	Unit	MCL ⁽¹⁾	MDL ⁽²⁾	MXV III	MW	/-D1	MW-D2	MW-D3
				MW-U1	MW-D1	DUP-18	M W-D2	M W-D3
Boron	mg/L	N/A	0.0012	<0.05 (0.0067 J)	0.15	0.14	0.11	0.19
Calcium	mg/L	N/A	0.63	34 B	65 B	61 B^2	130 B	21 B
Chloride	mg/L	N/A	1.4	<2.0 (1.9 J)	2.9	2.6	3.8	4.1
Fluoride	mg/L	4	0.070	<0.1 (0.070 J)	<0.1 (0.080 J)	<0.1 (0.082 J)	ND	0.14
Sulfate	mg/L	N/A	1.4	<5.0 (4.3 J)	29	29	16	33
pH ⁽³⁾	SU	N/A		8.10	6.73	6.80	6.86	7.32
Total Dissolved Solids	mg/L	N/A	5.0	98	270	180	440	280

Notes:

mg/L = milligrams per liter.

MCL = Maximum Contaminant Level

MDL = Method Detection Limit

S.U. = Standard Unit.

N/A = not applicable because the constituent does not have an MCL.

J = result is less than the reporting level but greater than or equal to the MDL and the reported concentration is an approximate value.

B = compound was found in the blank and sample.

^2 = Calibration Blank (initial calibration blank (ICB) and/or continuing calibration blank CCB) is outside acceptance limits.

-- = not applicable

DUP-18 is a duplicate sample collected from MW-D1.

- (1): MCLs indicate USEPA maximum contaminant levels. MCLs are established under 40 CFR §141.62 and 40 CFR
- (2): MDL indicates minimum detection limit, which is the minimum concentration of analyte that can be measured and reported.
- (3): The pH value was recorded at the time of sample collection in the field.

Table 5. Appendix IV Analytical Data Summary - Sampling Performed on April 26, 2022 Crisp County Power Commission Plant Crisp Ash Pond

Appendix IV to 40 C.F.R. Part 257 - Constituents for Assessment Monitoring

			USEPA's Health-		Upgradient Well ID		Downgradi	ent Well ID	
Constituent	Unit	$\mathbf{MCL}^{(1)}$	Based Level ⁽²⁾	$\mathbf{MDL}^{(3)}$	MW-U1	MV	V-D1	MW-D2	MW-D3
					MIW-UI	MW-D1	DUP-18	NI W-D2	M W-D3
Antimony	mg/L	0.006	N/A	0.0015	ND	ND	ND	ND	ND
Arsenic	mg/L	0.01	N/A	0.0012	0.0019	ND	ND	ND	ND
Barium	mg/L	2	N/A	0.00070	0.0031	0.015	0.014	0.14	0.072
Beryllium	mg/L	0.004	N/A	0.00092	ND	ND	ND	ND	ND
Cadmium	mg/L	0.005	N/A	0.00065	ND	ND	ND	ND	ND
Chromium	mg/L	0.1 ⁽³⁾	N/A	0.0010	0.0026	<0.0025 (0.0015 J)	ND	ND	ND
Cobalt	mg/L	N/A	0.006	0.00056	ND	ND	ND	ND	ND
Fluoride	mg/L	4	N/A	0.070	<0.1 (0.070 J)	<0.1 (0.080 J)	<0.1 (0.082 J)	ND	0.14
Lead	mg/L	0.015 ⁽⁴⁾	N/A	0.00081	ND	ND	ND	ND	ND
Lithium	mg/L	N/A	0.04	0.0049	ND	ND	ND	ND	ND
Mercury	mg/L	0.002 ⁽⁵⁾	N/A	0.00015	ND	ND	ND	ND	ND
Molybdenum	mg/L	N/A	0.1	0.0013	ND	ND	ND	ND	<0.01 (0.0030 J)
Radium 226 and 228 Combined	pCi/L	5	N/A	(6)	0.239 U	0.314 U	0.357 U	0.783	0.374 U
Selenium	mg/L	0.05	N/A	0.00082	ND	ND	ND	ND	ND
Thallium	mg/L	0.002	N/A	0.00046	ND	ND	ND	ND	ND

Notes:

mg/L = milligrams per liter.

pCi/L = picocuries per liter.

ND = the constituent was not detected above the analytical method detection limit (MDL).

J = concentration is less than the reporting level but greater than or equal to the MDL and the reported concentration is an approximate value.

U = result is less than the sample detection limit.

N/A = not applicable for the constituent.

^{(1):} MCLs indicate USEPA maximum contaminant levels. MCLs are established under 40 CFR §141.62 and 40 CFR §141.66.

^{(2):} USEPA's health-based level as Groundwater Protection Standard (40 CFR §257.95 (h)(2)).

^{(3):} MCL value for total chromium.

^{(4):} Lead Treatment Technology Action Level is 0.015 mg/L.

^{(5):} Value for inorganic mercury.

^{(6):} During the analysis of radium, background concentrations are substracted, thus each sample have a different Minimum Detectable Concentration (MDC). The MDCs were as follows: 0.716 pCi/L for MW-U1, 0.537 pCi/L for MW-D1, 0.591 pCi/L for MW-D2, 0.528 pCi/L for MW-D3, and 0.503 pCi/L for DUP-14.

Table 6. Evaluation of SSIs for Appendix III Constituents Crisp County Power Commission Plant Crisp Ash Pond

Appendix III to Part 257 Constituents for Detection Monitoring	Prediction Limit ¹	Wells with SSI
Boron (mg/L)	0.05	MW-D1, MW-D2, MW-D3
Calcium (mg/L)	39.64	MW-D1, MW-D2
Chloride (mg/L)	9.833	None
Field pH (S.U.)	<5.686 or >9.179	None
Fluoride (mg/L)	0.10180	MW-D3
Sulfate (mg/L)	6.703	MW-D1, MW-D2, MW-D3
Total Dissolved Solids (TDS) (mg/L)	141.6	MW-D1, MW-D2, MW-D3

Notes:

mg/L = milligrams per liter.

SSI = Statistically Significant Increases from Background.

S.U. = Standard Unit

^{1:} The Prediction Limit was calculated using data collected from the background well MW-U1 between February 2017 and April 2022.

Table 7. Summary of Basic Groundwater Statistics and GWPS for Appendix IV Constituents **Crisp County Power Commission Plant Crisp Ash Pond**

Appendix IV to Part 257 - Constituents for Assessment Monitoring	Well ID	Number of Samples	Number of Non-detects	% Non-detects	Minimum	Maximum	Upper Tolerance Limit	Maximum Contaminant Level (MCL established under 40 CFR §161.62 and 40 CFR §141.66) or Groundwater Protection Standard (GWPS listed under 40 CFR §257.95(h)(2))	Selected GWPS for the Site
	MW-U1	13	13	100%	< 0.0005	< 0.0025	0.0025		
A 4' F /T]	MW-D1	13	13	100%	< 0.0005	< 0.0025		0.006	0.006
Antimony [mg/L]	MW-D2	13	13	100%	< 0.0005	< 0.0025		0.006	0.006
	MW-D3	13	13	100%	< 0.0005	< 0.0025		-	
	MW-U1	18	14	78%	0.00015 (JB)	0.0019	0.0019		
	MW-D1	18	18	100%	<0.00025	< 0.0013			
Arsenic [mg/L]	MW-D2	18	14	78%	0.00027 (B)	< 0.0013		0.01	0.01
	MW-D3	18	4	22%	0.00048 (J)	0.0016		-	
	MW-U1	18	0	0%	0.0018	0.0062	0.0062		
	MW-D1	18	0	0%	0.0095	0.027	0.0002		
Barium [mg/L]	MW-D2	18	0	0%	0.087	0.190		2	2
	MW-D3	18	0	0%	0.061	0.230		-	
	MW-U1	13	13	100%	<0.001	<0.0025	0.002		
	MW-D1	13	13	100%	<0.0004	<0.0025	0.002	1	
Beryllium [mg/L]	MW-D1	13	13	100%	<0.0004	<0.0025		0.004	0.004
	MW-D3	13	13	100%	< 0.0004	< 0.0025		-	
	MW-U1	14	14	100%	< 0.0002	< 0.0025	0.001		
Cadmium [mg/L]	MW-D1	14	13	93%	< 0.0002	< 0.0025		0.005	0.005
eaumam [mg/2]	MW-D2	14	13	93%	0.000075 (J)	< 0.0025		-	0.002
	MW-D3	14	14	100%	0.000071 (J)	<0.0025	0.0051		
	MW-U1 MW-D1	16 16	0 14	0% 88%	0.0011 <0.0005	0.0051 0.0034	0.0051	-	
Chromium [mg/L]	MW-D1	16	15	94%	<0.0005	0.0034		0.1	0.1
	MW-D3	16	15	94%	< 0.0005	0.0029		1	
	MW-U1	17	17	100%	< 0.0005	< 0.0025	0.0025		
Cobalt [mg/L]	MW-D1	17	17	100%	< 0.0005	< 0.0025		0.006	0.006
Cooan [mg/L]	MW-D2	17	15	88%	0.00047 (J)	< 0.0025		0.000	0.000
	MW-D3	17	2	12%	0.00035 (J)	<0.0025	0.1251		
	MW-U1 MW-D1	18 18	0	11% 0%	0.040 (J) 0.040 (J)	0.100 (B) 0.120	0.1251	-	
Fluoride [mg/L]	MW-D1	18	1	6%	0.040 (J)	0.120 (B)		4	4
	MW-D3	18	0	0%	0.060 (J)	0.200 (F1)		-	
	MW-U1	13	12	92%	< 0.00025	< 0.0013	0.0013		
Lead [mg/L]	MW-D1	13	12	92%	< 0.00025	< 0.0013		0.015	0.015
2000 [9.2]	MW-D2	13	11	85%	<0.00025	< 0.0013		- 0.015	0.010
	MW-D3	13	13	100%	<0.00025	<0.0013	0.0025		
	MW-U1 MW-D1	15 15	14 14	93% 93%	0.00034 (J) <0.0005	<0.0025 <0.005	0.0025		
Lithium [mg/L]	MW-D2	15	13	87%	< 0.0005	< 0.005		0.04	0.04
	MW-D3	15	12	80%	0.00048 (J)	< 0.005			
	MW-U1	13	12	92%	0.000099 (JB)	< 0.0002	0.0002		
Mercury [mg/L]	MW-D1	13	12	92%	0.000077 (JB)	<0.0002		0.002	0.002
, , ,	MW-D2	13	11	85%	0.00011 (JB)	<0.0002		-	
	MW-D3 MW-U1	13 16	12 16	92% 100%	0.00011 (JB) <0.002	<0.0002 <0.01	0.01		
	MW-D1	16	16	100%	<0.002	<0.01	0.01	1	
Molybdenum [mg/L]	MW-D2	16	13	81%	0.0012 (J)	<0.015		0.10	0.10
	MW-D3	16	4	25%	0.0017 (J)	< 0.01			
	MW-U1	18	4	22%	0.000	<5	5		
Radium 226 and 228	MW-D1	18	4	22%	0.0994	<5		5	5
228 Combined [pCi/L]		18	4	22% 28%	0.0139	<5 <5		-	
	MW-D3 MW-U1	18 15	5 8	53%	0.0501 0.00039	<0.0013	0.0013		
	MW-D1	15	14	93%	<0.00039	<0.0013	0.0013		0
Selenium [mg/L]	MW-D2	15	12	80%	< 0.00025	< 0.0013		0.05	0.05
	MW-D3	15	11	73%	0.00021 (J)	0.0028			
						.0.000.5	0.0005	+	
	MW-U1	17	17	100%	<0.0001	< 0.0005	0.0005	-	
Thallium [mg/L]	MW-U1 MW-D1 MW-D2	17 17 17	17 17 7	100% 100% 41%	<0.0001 <0.0001 0.000085 (J)	<0.0005 <0.0005 <0.0005	0.0005	0.002	0.002

Notes: mg/L = milligrams per liter

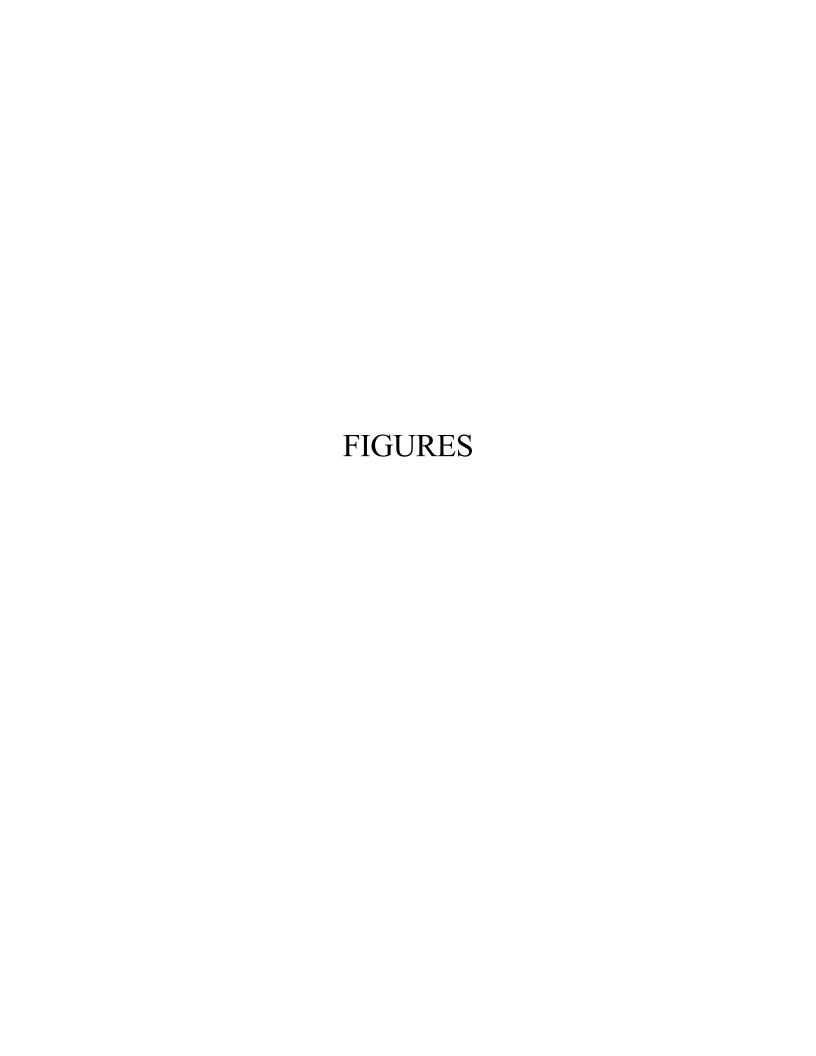
pCi/L = picocuries per liter

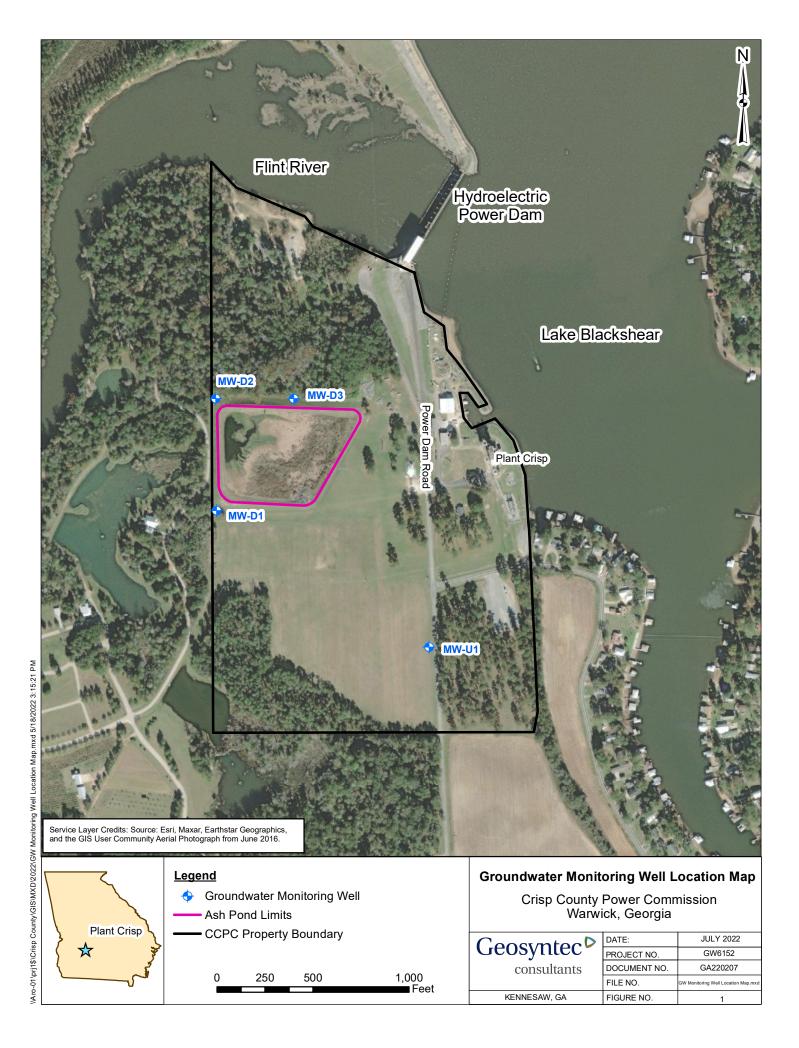
J = Result is less than the reporting level but greater than or equal to the method detection limit (MDL) and the concentration is an approximate value.

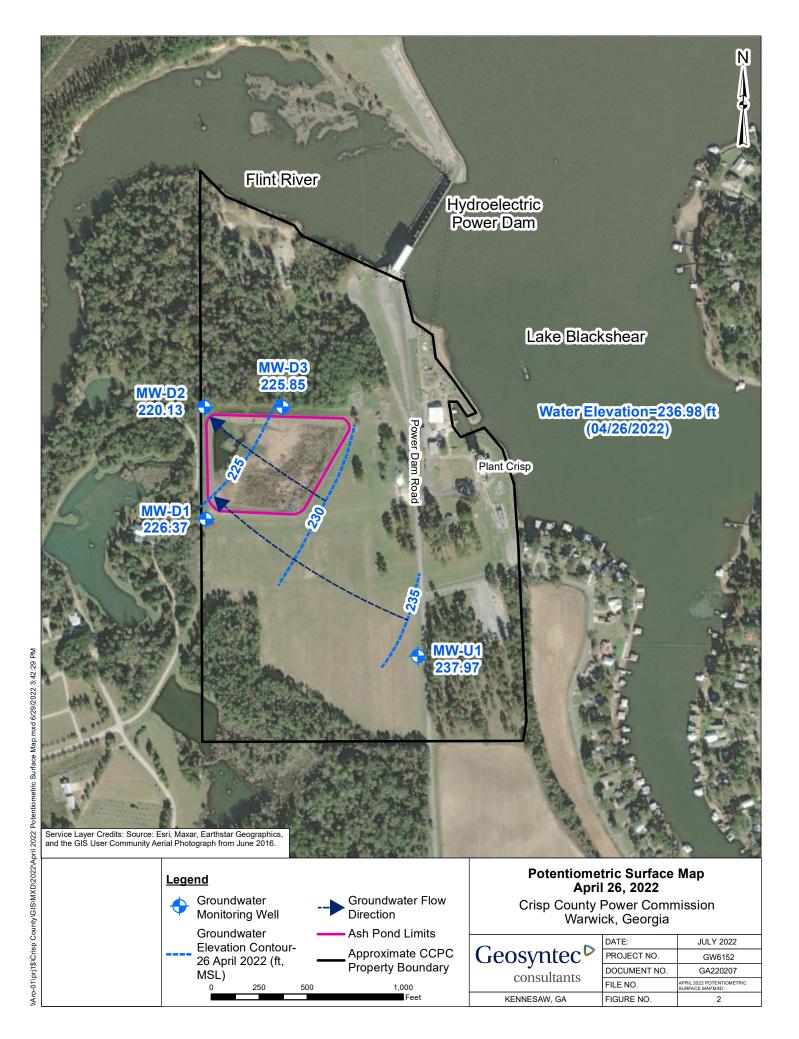
 $[\]boldsymbol{B}$ = Compound was found in the blank and sample.

Table 8. Evaluation of SSLs for Appendix IV Constituents Crisp County Power Commission Plant Crisp Ash Pond

Appendix IV to Part 257 - Constituents for Assessment Monitoring	Well ID	Selected Groundwater Protection Standard (GWPS) for the Site (From Table 7)	Lower Confidence Limit if a constituent is Detected During the April 2022 Monitoring Period	Concentrations in Downgradient Well Show Statistically Significant Level (SSL) Above GWPS?		
	MW-U1		E	Background Well		
Antimony [mg/L]	MW-D1	0.006	ND	No		
	MW-D2		ND	No		
	MW-D3		ND	No		
	MW-U1		Е	Background Well		
Arsenic [mg/L]	MW-D1	0.01	0.00025	No		
Arsenic [mg/L]	MW-D2	0.01	0.00095	No		
	MW-D3		0.000776	No		
	MW-U1		Е	Background Well		
Darium [ma/I]	MW-D1	2	0.01145	No		
Barium [mg/L]	MW-D2	2	0.1265	No		
	MW-D3		0.1148	No		
	MW-U1		Е	Background Well		
Beryllium [mg/L]	MW-D1	0.004	ND	No		
	MW-D2	0.004	ND	No		
	MW-D3		ND	No		
	MW-U1			Background Well		
Cadmium [mg/L]	MW-D1	0.005	ND	No		
[8]	MW-D2		ND	No		
	MW-D3		ND	No		
	MW-U1 MW-D1		0.0015	Background Well No		
Chromium [mg/L]	MW-D1	0.1	0.0013	No		
	MW-D3		0.0012	No		
	MW-U1			Background Well		
	MW-D1	0.0060	ND	No		
[Cohalt Img/I]	MW-D2	0.0060	ND	No		
	MW-D3		ND	No		
	MW-U1			Background Well		
Fluoride [mg/L]	MW-D1	4	0.06213	No		
	MW-D2	·	0.05	No		
	MW-D3		0.1 No Background Well			
	MW-U1 MW-D1		ND	No		
Lead [mg/L]	MW-D1	0.0150	ND ND	No		
	MW-D3		ND	No		
	MW-U1			Background Well		
	MW-D1	0.0400	ND	No		
Lithium [mg/L]	MW-D2	0.0400	ND	No		
	MW-D3		ND	No		
	MW-U1			Background Well		
Mercury [mg/L]	MW-D1	0.002	ND	No		
, , ,	MW-D2		ND	No		
	MW-D3		ND	No Rockground Well		
	MW-U1 MW-D1		0.0020	Background Well No		
Molybdenum [mg/L]	MW-D1 MW-D2	0.10	0.0020	No No		
	MW-D3		0.0020	No		
D 11 000	MW-U1			Background Well		
Radium 226 and 228	MW-D1	_	0.156	No		
228 Combined [pCi/L]	MW-D2	5	0.333	No		
[PCI/L]	MW-D3		0.409	No		
	MW-U1			Background Well		
Selenium [mg/L]	MW-D1	0.05	ND	No		
	MW-D2		ND	No No		
	MW-D3		ND	No Background Well		
	MW-U1 MW-D1		ND	No		
Thallium [mg/L]	MW-D1	0.002	ND	No		
			1 11			


Notes:


 $\overline{\text{mg/L}} = \text{milligrams per liter}$


pCi/L = picocuries per liter

ND = Not Detected

Highlighted cells show the background well (MW-U1).

APPENDIX A

Well Inspection Forms

MEMORANDUM

DATE: July 29, 2022

TO: Ronnie Miller, Crisp County Power Commission

CC: Dawit Yifru., Geosyntec Consultants

FROM: Geosyntec Consultants

SUBJECT: Crisp County Power Commission – Well Inspection Documentation

Geosyntec Consultants has prepared this memorandum to provide documentation of groundwater monitoring well maintenance and/or repair performed at Crisp County Power Commission during the 2022 semi-annual reporting period. Documentation of the well inspections are provided as an attachment to this memorandum.

Date	Well ID	Maintenance/ Repair Performed		
4/26/2022	MW-U1, MW-D1, MW-D2, MW-D3	Do not need maintenance or repair at this time, no action taken.		

Well Inspection Form

Plant Name/Unit Name CRISP COUNTY POWER COMM. Field Technician Well ID MW-DI	Date (mm/dd/yyyy) 4/26/2022 Field Conditions 5/18hth Cloudy
1 Location/Identification a Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well in a high traffic area?	Yes No Comments
d Are appropriate measures in place to protect the well (e.g., bollards)? e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	
2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition?	
a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)?	
4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with past well logs? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	
5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good	Not applicable
operational condition? C If equipped with a dedicated water quality sonde, is it in good operational condition? Does the desiccant need to be replaced on the water quality sonde? If equipped with a water level data logger, is it in good operational condition? Does the well recharge adequately when purged? Does the well require redevelopment (low flow, excess turbidity)?	
6 <u>Corrective Actions</u> a Are corrective actions needed? If yes, indicate here:	

Well Inspection Form

Plant N	ame/Unit Name CRISP COUNTY Power Comm.	Date (i	mm/dd/yyyy)	4/26/22	
Field Technician Dawit Yifm			Conditions	Sunny	
Well ID			-	3	
		Vaa	Me	Comments	
1 Loca	ation/Identification	Yes	No	Comments	
a	Is the well visible and accessible?				
b	Is the well properly identified with the correct well ID?				
С	Is the well in a high traffic area?		<u> </u>		
d	Are appropriate measures in place to protect the well (e.g., bollards)?				
е	Is the drainage around the well acceptable? (no standing water, nor				
	is well located in obvious drainage flow path)				
2 Prot	ective Casing		9,	· · · · · · · · · · · · · · · · · · ·	
	Protective Casing a Is the protective casing free from apparent damage and able to be				
а	secured?	V			
b	Is the casing free of degradation or deterioration?	-			
c	Does the casing have a functioning weep hole?	1	* **		
d	Is the annular space between casings clear of debris and water, or				
	filled with pea gravel/sand?	~			
е	Is the well locked?	~			
f	If locked, is the well lock in good condition?	~			
g	Is the well lid in good condition?	~			
3 Surf	ace Pad				
a	Is the well pad in good condition (not cracked or broken)?	1			
b	Is the well pad sloped away from the protective casing?	-	-		
С	Is the well pad in complete contact with the protective casing?	~			
d	Is the well pad in complete contact with the ground surface and				
	stable (not undermined by erosion, animal burrows, and does not				
	move when stepped on)?				
е	Is the pad surface clean (not covered with sediment or debris)?				
4 Inter	rnal Casing				
a	Does the cap prevent entry of foreign material into the well?	~			
b	Is the casing free of kinks or bends, or any obstructions from foreign				
	objects (such as bailers)?	_			
С	Is the well properly vented for equilibration of air pressure?				
d	Is the survey point clearly marked on the inner casing?				
e	Is the depth of the well consistent with past well logs?				
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip				
	couplings in construction)	~			
		-			
	pling and Data Collection Equipment				
а	Indicate if the well is equipped with dedicated sampling equipment,				
	a dedicated water quality sonde, and/or dedicated water level data logger.		Not	applicable	
b	If equipped with dedicated sampling equipment, is it in good			17.000	
D	operational condition?				
С	If equipped with a dedicated water quality sonde, is it in good				
Ü	operational condition?				
d	Does the desiccant need to be replaced on the water quality sonde?				
e	If equipped with a water level data logger, is it in good operational				
•	condition?				
f	Does the well recharge adequately when purged?				
g	Does the well require redevelopment (low flow, excess turbidity)?		-		
•		-			
	rective Actions		/		
a	Are corrective actions needed?	-			
it ye	es, indicate here:				
10					

Well Inspection Form

Plant Name/Unit Name Field Technician Well ID Crisp County Power Co Dawit Yithu MW-D3	Date (mm/dd/yyyy) Field Conditions	4/26/2022 Sunny
Location/Identification a Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	Yes No	Comments
2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition?		
a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)?		
4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with past well logs? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	<u> </u>	
5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger.	Not app	liable
 If equipped with dedicated sampling equipment, is it in good operational condition? If equipped with a dedicated water quality sonde, is it in good operational condition? Does the desiccant need to be replaced on the water quality sonde? If equipped with a water level data logger, is it in good operational condition? Does the well recharge adequately when purged? Does the well require redevelopment (low flow, excess turbidity)? 		
6 <u>Corrective Actions</u> a Are corrective actions needed? If yes, indicate here:		

Well Inspection Form

Plant Name/Unit Name CLISP COUNTY POWER COMM. Field Technician DAW IT YIFRU	Date (mm/dd/yyyy)Field Conditions	4/26/2022 SUMY
Well ID MW - UI		J4/1/J
Location/Identification a Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing	Yes No	Comments
 a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad 	<u> </u>	
a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)?		
4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with past well logs? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	<u> </u>	
5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)?	NA NA	
6 Corrective Actions a Are corrective actions needed? If yes, indicate here:		

GEOSYNTEC CONSULTANTS Photographic Record

Client: Ronnie Miller Project Number: GW6152

Site Name: Crisp County Power Commission Site Location: 961 Power Dam Rd, Warwick, GA 31796

Photograph 1

Date: 26 April, 2022

Direction: East

Comments: MW-U1 with well marker, bollards, intact well pad, and locked protective casing.

Photograph 2

Date: 26 April, 2022

Direction: Southwest

Comments: MW-D1 with well marker, bollards, intact well pad, and locked protective casing.

GEOSYNTEC CONSULTANTS Photographic Record

Client: Ronnie Miller Project Number: GW6152

Site Name: Crisp County Power Commission Site Location: 961 Power Dam Rd, Warwick, GA 31796

Photograph 3

Date: 26 April, 2022

Direction: Northwest

Comments: MW-D2 with well marker, bollards, intact well pad, and locked protective casing.

Photograph 4

Date: 26 April, 2022

Direction: North

Comments: MW-D3 with well marker, bollards, intact well pad, and locked protective casing.

APPENDIX B

Field Groundwater Sampling Forms

Water Level Measurement Form

Site Name: Location:

Crisp County Power

Date:

Warwick, Georgia 04/26/2022

Sampling Person: <u>Tristan Orndorff</u>
Field Conditions: Cloudy early
Sunny afternuon

Well ID	Time	TOC ELevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations
MW-U1	8:53	249.52	11.55	37.4	237.97	
MW-D1	19:04	241.77	15.40	22.86	226.37	
MW-D2	9:10	232.66	12.53	22.10	220.13	
MW-D3	9:15	233.78	7.93	22.7	225.85	
			END OF D	AY WATER L	EVELS	
MW-U1	14:26	249.52	111.55	37.4	237.97	
MW-D1	4:20	241.77	15.35	22,86		
MW-D2	4:12	232.66	12.8	22.6	226.42 219.86	
MW-D3	4:18	233.78	8.9	22.7	224.88	
				5501	2011.00	
		ļ				
		<u> </u>	-			
		-				
	- 		-			
	<u> </u>				-	
	i -					

SITE NAME: CF	RISP COU	NTY POW	ER COMM	ISSION	1 -	ITE OCATION: 9	61 Power D	Dam Road, \	Warwic	k. GA 3179	96
				SAMPLE		1-DI	1			1/26/2	
	10144	1				SING DA	TA			112010	0 0101
WELL		TUBING)	WEI	L SCREEN		STATIC	DEPTH . A A	PI	URGE PUMP T	YPE
DIAMETER	(inches): 2	DIAMET	ER (inches): 0	.25 DEF	TH: 12 6	eet to 22 f		ER (feet): 15.2		R BAILER:	PP
		1 WELL VOL						WELL CAPACI			
	if applicable)	IDCE: 4 FOLL	= (22.5			36		0.16 UBING LENGTH)	gallons/f	1.4.5	gallons gallons
	if applicable)	JRGE. TEQU									
INITIAL DU	MP OR TUBING	^		= ga P OR TUBINO	allons + (1 200	ons/foot X	feet)		gallons TOTAL VOLU	
	WELL (feet):	19	DEPTH IN W		19	INITIATI	ED AT: 11-19	ENDED AT:	12:00	PURGED (ga	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE _(gpm)_	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (mg/L) or % saturation	TURBID (NTUs	ORP	
11:19	0.0	0.0	255	15.70	7.40	23.47	0,277	3.61	5.10	227	Clear
11 30	0.74	0.74	255	15.84	6.74	23.37	0.380	3.78	0.4		
11:35	0.34	1.08	255	16.30	676		6.383	3.69	0,2		
11:42	0.43	1.50	230	16:10	6.79		0.382	3.44	0.11		
11:49	6.43	1.93	230	16.24	6.81	23,60	6.375	3.18	0.15		
11:54	0.30	2.23	230	16.30	6.81	23.83	0,368	2.99	0.30		clear
12:00	0.36	2.6D	230	16.41	6.80		0.351	2.90	0.5		
2:30	1.82	4.42	230	16:70	6.73	24,15	0.332	3.00	La		
W	1.07	1,12	2,0	ROLLO	0.10	Ortho	01300	3.00	11.0	1 000	s carr
WELL CAP	ACITY (Gallon	s Per Foot): 0	. 75" = 0.02;	1" = 0.04;	1.25" = 0.0	06; 2" = 0.1			5" = 1,02;	6" = 1.47;	12 " = 5.88
	SIDE DÌA. CAF EQUIPMENT C			006; 3/16" P = Bladder F			26; 5/16" = 0. Submersible Pu		.006; 1. eristaltic Pu	/2" = 0.010;	5/8" = 0.016 ther (Specify)
TORGING	LOCOII INILIAI O	ODES. B	- Dallel, D	r - bladdel i		PLING DA		mp, re-re	snstantic i c	лпр, 0-0	ther (Specify)
	BY (PRINT) / A Ornduc	10 / 1		AMPLER(S)	SIGNATURI	E(S):		SAMPLING INITIATED A	T: 12:0	O SAMPLIN	IG 12:10
PUMP OR	TUBING	19	T	UBING	775-10-00			-FILTERED: Y		FILTER S	ilZE: μm
	WELL (feet): ONTAMINATION	ON: PUM	27	MATERIAL CO	TUBING	LDPE Y N (f	eplaced	on Equipment Ty DUPLICATE:) N	
	LE CONTAINE					ATION (includ				SAMPLIN	
SAMPLE		MATERIAL		PRESERVAT		TOTAL VOL		INTENE ANALYSIS	AND/OR	G EQUIPME	SAMPLE PUMF FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED		ED IN FIELD (METH		NT CODE	(mL per minute)
	1	HDPE	1.9L	HNO3		****		9315, 9320, Ra Ra228		APP	250
	1	HDPE	1.0L	NONE				SM4500,		APP	250
	1	HDPE	0.25L	HNO3				6020, 74	470A	APP	250
FIEI D SAR	APLING COND	ITIONS									
		/									
1,-	Well Sign Pres	ent:VY	es	_ No							
2.	Well Access: _	<u> </u>	<u>US</u>								
3. Sampling & Purging Equipment Condition:											
4. Site Condition that may Affect Sampling Present?Yes (describe below)No											
MATERIAL	. CODES:		Glass; CG = T = Teflon;			High Density	Polyethylene;	LDPE = Low De	ensity Polye	ethylene; PF	= Polypropylene;
SAMPLING	EQUIPMENT	CODES: A	PP = After (Thi	rough) Perista	altic Pump;	B = Bailer				ric Submersible	Pump;
			FPP = Reverse				Method (Tubing	Gravity Drain);		ner (Specify)	

NOTES: 1 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SESDPROC-301-R4)

pH: \pm 0.1 units **Specific Conductance**: \pm 5% **Dissolved Oxygen**: 0.2 mg/L or 10% change in saturation (whichever is greater) **Turbidity**: readings \leq 10 NTU; **ORP**: \pm 20 mV.

from dup

SITE					S	ITE					
NAME: C	RISP COU	NTY POW	ER COMM	ISSION	L.	OCATION: \$	61 Power	Dam Road,	Warwic	k, GA 317	96
WELL NO:	MW-Da	2		SAMPLE		W-Da				1/26/20	
					PUR	GING DA	TA			-	
WELL		TUBING			LL SCREEN		STATIC	DEPTH 010	P	URGE PUMP T	YPE
	R (inches): 2	DIAME	TER (inches):).25 DE	PTH: () 6	eet to 22	feet TO WAT	ER (feet): 12.0	o CC	R BAILER:	PP
(only fill ou	it if applicable)	I WELL VOI	= (22.)			55		0.16	TY gallons/i	foot - 1 d	l' gellene
EQUIPME	NT VOLUME P	URGE: 1 EQL	IPMENT VOL.	= PUMP VOI		BING CAPAC		UBING LENGTH	_	1,0	
(only fill ou	t if applicable)				allons + (200	ons/foot X				
INITIAL PL	JMP OR TUBIN	IG 17	FINAL PUM	P OR TUBIN	G	DUDOIN	10	PURGING		gallons TOTAL VOLI	
DEPTH IN	WELL (feet):	17	DEPTH IN V	VELL (feet):	17	INITIAT	ED AT: 1-23	ENDED AT:	2:01	PURGED (ga	allons): 2.17
TIME	TIME VOLUME VOLUME PÜRGE PURGED RATE (gallons) (gallons)		DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIE (NTU			
1.23	0.0	0.0	240	13.40	6,60	23,25	0,443	1,37	0.3	0 334	Clear
1:29	0.38	0.38	240	13,41	6,43	21.80	0.559	0.60	0.18	100	
1:35	0.38	0.76	240	13.70	6.33	21,71	0.557	0.00	0.10	The second secon	Clear
1:42	0.41	1.17	220	13,90	6.35	21.73	0.587	0.00	0,2		clear
1:49 0.37 1.54 200 14,04 6.66 21,80 0,593 0,00 0.14 212 01.00											
1:56	0.37	1.91	200	14.19	6.75	21,99	0.601	0.00	0.19		
2:01	0.26	2.17	200	14.26	672		0.606	0.00	0.18		
2:25	0.32	2,49	200		6.86		6 607	0.00	0.13		
						9.7. 11:				100	
WELL CAPACITY (O-III P. III-III- P. III											
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gall/Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016											
	EQUIPMENT C		-	P = Bladder F			Submersible Pu		ristaltic Pu		ther (Specify)
CAMPIED	DV (mm)					LING DA	ATA				
7.00	BY (PRINT) / A	and t	untic s	AMPLER(S)		~~	_	SAMPLING INITIATED AT	e 11/1	SAMPLIN	IG 2'24
PUMP OR 1	TUBING	11 000	Т	UBING			FIELD	-FILTERED: Y	N		IZE:μm
	WELL (feet): CONTAMINATION	ON: PUMI		IATERIAL CO		_DPE		on Equipment Typ			
	LE CONTAINE				TUBING		pplaced)	DUPLICATE:	Υ	(N)	
SAMPLE	#	MATERIAL		PRESERVATI		TION (includi		INTEND ANALYSIS A		SAMPLIN G	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME F	USED		TOTAL VOL D IN FIELD (r		METHO		EQUIPME NT CODE	(mL per minute)
	1	HDPE	1.9L	HNO3				9315, 9320, Ra2 Ra228	226,	APP	250
	1	HDPE	1.0L	NONE		****		SM4500,	2540C	APP	250
	1	HDPE	0.25L	HNO3		••••		6020, 74	170A	APP	250
FIELD SAN	PLING COND	ITIONIO									
	Well Sign Pres		20	No							
		- 14 A		- INO							
	Well Access	- W		. 0		74	V				
	Sampling & Pu					someth	ing ma	y he win	ong 1	with D	0:
4. Site Condition that may Affect Sampling Present?Yes (describe below)No											
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)											
SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;											
IOTES: 1	RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain), O = Other (Specify) DTES: 1 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SESDPROC-301-R4)										

SITE CE	SITE AME: CRISP COUNTY POWER COMMISSION SITE LOCATION: 961 Power Dam Road, Warwick, GA 31796													
WELL NO:			ER COIVIIVI				_	017	ower D	am Road,				
WELL NO.	WM-D	>5		SAIVIP			V-D3	TA			DATE: (4120	1202	. 2
WELL		TUBING	3	Tv			SING DA		STATIC D	EDTH		DURGE	PUMP TYP	
	(inches): 2		rER (inches): 0	- 4			—			R (feet): 8 . C	2	OR BAIL		PP
			.UME = (TOTA	L WELL D						WELL CAPAC	ITY			
, .	if applicable)	UBCE. 4 FOU	PMENT VOL.	7	feet - <	Y.C	3		•).16			2.30	5 gallons
(only fill out	if applicable)	UKGE: TEQU								BING LENGTH				OWNER DAWN
INITIAL PU	MP OR TUBIN	G	FINAL PUMI	= P OR TUBI	gallons -			ns/foo		feet PURGING			gallons = AL VOLUM	gallons
I	WELL (feet):	15	DEPTH IN V	VELL (feet)		フ 	INITIATE	ED AT:	3:05	ENDED AT:	3.44	PUR	GED (gallo	ons): 2.00
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE -(gpm)	DEPTH TO WATER (feet)	(etan		TEMP (°C)	(circ	OND le units) hos/cm µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURB (NT		ORP (mv)	COLOR (describe)
3:05	0.0	0.0	230	9.3	7.4	H	29.87	0.4	148	0.00	0,6	24	183	Clear
3:16	0.60	0.60	205	9.82	7.4	rÌ	28.65		149	0.00	0.0		181	Clear
3:23	0.35	0.95	190	9.90		10	27,27	0.	458	0.00	0,0		173	ckar
3:28	0.25	1,20	190	9.93	7.3	9	27.07	0,4	162	0.00	0.0	79		cleas
3:36		1.100	190	9.94		9_	26,94	-		0.00	0,0		149	dear
3:44	0.40	2.00	190	995	-	10	26.80		160	0.00	0.1		136	Clear
4:10	1.31	3.31	190	9.95	1. 4	32	27.14	0.4	164	0.00	O,C	9	127	Clear
					-						-			
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88														
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026, 5/16" = 0.004; 3/8" = 0.006, 1/2" = 0.010; 5/8" = 0.016														
TORONO	EGOII MEITI	ODES. B	- Dallel, D	r - bladde			LING DA		ersible Full	ng, ee-e	enstante r	-ump,	0 = 0th	er (Specify)
	BY (PRINT) / A			AMPLER(S) SIGNA					SAMPLING	010	~ [SAMPLING	1120
IRISTU	n Crindo	itt/bees	untec -	RISTA	n O	udi	orto_		T	INITIATED A	- Arrest		ENDED AT	
PUMP OR T	WELL (feet):	15		IATERIAL	CODE:	L	DPE			FILTERED: You Equipment Ty		F	ILTER SIZ	.Ε: μm
FIELD DEC	ONTAMINATIO	ON: PUM	PY 🕅		TUB	ING	Y N (place	9)	DUPLICATE	: Y	C	Ñ)	
SAMP	LE CONTAINE	R SPECIFICA	TION	SAMP	LE PRES	ERVA	TION (includi	ng wet	tice)	INTEN			MPLIN G	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME F	PRESERVA USEC	ATIVE		OTAL VOL D IN FIELD (ml.)	FINAL pH	ANALYSIS METH		EQI	JIPME	FLOW RATE (mL per minute)
	1	HDPE	1.9L	HNO		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****	-/	PII	9315, 9320, R	a226,	_	ODE	250
	1	HDPE	1.0L	NON	E		12.2			SM4500,	2540C	A	PP	250
	1	HDPE	0.25L	HNO	3		****			6020, 7	470A	Α	PP	250
	IPLING COND									- in				
1	Well Sign Pres		es	_ No										
2 Well Access:NO_ISSUES														
3.	Sampling & Pu	ırging Equipme	ent Condition:	cle	an				, -	D0	Rosul	ts ?		
4 Site Condition that may Affect Sampling Present?Yes (describe below)No														
MATERIAL	CODES		Glass; CG = T = Teflon,				High Density	Polyeth	nylene;	LOPE = Low D	ensity Pol	yethylen	e, PP =	Polypropylene;
SAMPLING	EQUIPMENT		APP = After (The				B = Bailer		BP = Bladd	ler Pump, E Gravity Drain);			mersible Pu	ımp.
4	CTARILIZATIO					- ' '				(SESDERO		Other (Sp	ecity)	

NOTES: 1 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SESDPROC-301-R4)

SITE						TE					_
NAME: CF	RISP COU	NTY POW	ER COMM	IISSION	FC	OCATION: 9	61 Power	Dam Road, \	Warwick	, GA 3179	5
WELL NO:	MW-	UI		SAMPLE	id: W/	N- 11			DATE: 4	126/20:	32
					PURC	SING DA	TA				
WELL	•	TUBING			L SCREEN		STATIC			RGE PUMP TY	The state of the s
DIAMETER	(inches): 2	1 WELL VOI	TER (inches):			et to 37 f	eet TO WAT	ER (feet): 11, 5	OR OR	BAILER:	PP
412 1111111 111111111111111111111111111	if applicable)	I WELL VOI	= (37,					0.16		pt = 4,16	gallons
	IT VOLUME PU	JRGE: 1 EQU	IPMENT VOL.	= PUMP VOL			TY X T	UBING LENGTH)			1
only fill out	if applicable)			= ga	llons + (gallo	ons/foot X	feet)	+	gallons =	gallons
INITIAL PU	MP OR TUBIN			P OR TUBING		PURGIN	IG OVA	- PURGING	110120	TOTAL VOLUI	VAE
DEPTH IN	WELL (feet):	25	DEPTH IN V	VELL (feet):	25	INITIATE	ED AT: 9:44	DISSOLVED	10-35	PURGED (gall	ons): 3.3
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE -(gpm)-	DEPTH TO WATER (feet)	pH (standard units)	TEMP。 (°C)	COND (circle units) μmhos/cm or μS/cm	OXYGEN (circle units) (mg/l) or % saturation	TURBIDIT (NTUs)		COLOR (describe)
9:45	0.0	0.0	290	11.55	6,58	22, 21	6.218	5.97	9.80	295	clear
9:55	0.66	0.66	250	12.40	7.06	22.11	0,212	5.38	18.10		clear
10:03	0.53	1.19	250	12.23	7.86e		0.178	4.25	16,00	2	
10:11	0.53	1.72	250	12.23	7.95	23.15	0.176	4.11	13.9	0 221	clear
10:18	0.46	2.18	250	12.23	8.04	22.18	0.173	4.65	12.00	0 204	cloar
10:25	0.46	2.64	a50	12.23	8.09	22,20	0.171	3.84	10.30	199	Clear
10:30	0.33	2.97	250	1	8.10	-	0.169	4.14	9.56	194	clear
10:35	0.33	3.30	250	12.23	8.10	22,29	0.169	4.04	8.94	196	clear
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88											
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016											
PURGING	EQUIPMENT C	ODES: B	= Bailer, B	BP = Bladder P			Submersible Pu	ump; PP = Pe	eristaltic Pun	np; O = Ot	her (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:	1 5	SAMPLER(S) S		LING DA	ATA	T		T	_
	Orndorff		4rtec -	Restan		doutf	y .	SAMPLING INITIATED A	T: 10:30	SAMPLING ENDED A	10:50
PUMP OR	TUBING	25	1 1	TUBING		- '		D-FILTERED: Y		FILTER SI	ZE: μm
	WELL (feet): ONTAMINATION		-	MATERIAL CO	TUBING	_DPE Y Nati	eplaced	DUPLICATE:		®	
	LE CONTAINE		-			TION (includi			T	SAMPLIN	0.1.151.5.511.15
SAMPLE	#	MATERIAL		PRESERVATI		TOTAL VOL	FINAL	ANALYSIS A	AND/OR	G EQUIPME	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED		ED IN FIELD (METH		NT CODE	(mL per minute)
	1	HDPE	1.9L	HNO3		(*(*(*)*)		9315, 9320, Ra Ra228		APP	250
	1	HDPE	1.0L	NONE				SM4500,		APP	250
	1	HDPE	0.25L	HNO3				6020, 7	470A	APP	250
FIFI D SAR	IPLING COND	ITIONS								1	
	Well Sign Pres		·	Ne							
		. 1	es	No	oC.						
1	Well Access:			5 155u							
3	Sampling & Pu	irging Equipme	ent Condition	Clea	<u> </u>						
4. Site Condition that may Affect Sampling Present?Yes (describe below) No											
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)											
	EQUIPMENT	F	APP = After (Th RFPP = Reverse	e Flow Peristal	tic Pump;		Method (Tubin	g Gravity Drain);	O = Othe	: Submersible F er (Specify)	ump;
	A11-5-1-5-1-5-1-5-1-5-1-5-1						THE RESERVE OF THE PARTY OF THE	e (SESDEDOC			

NOTES: 1. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SESDPROC-301-R4)

APPENDIX C Laboratory Analytical Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

Laboratory Job ID: 400-219114-1

Laboratory Sample Delivery Group: CCPC, Warwick GA

Client Project/Site: Crisp County CCR

For:

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Dawit Yifru

CheyrouxWhitmine

Authorized for release by: 5/12/2022 4:49:48 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

Cheyenne.Whitmire@et.eurofinsus.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

9

10

46

13

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR

Laboratory Job ID: 400-219114-1 SDG: CCPC, Warwick GA

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	13
Chronicle	14
QC Association	16
QC Sample Results	19
Chain of Custody	25
Receipt Checklists	27
Certification Summary	28

6

8

9

11

12

Case Narrative

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR

Job ID: 400-219114-1 SDG: CCPC, Warwick GA

Job ID: 400-219114-1

Laboratory: Eurofins Pensacola

Narrative

Job Narrative 400-219114-1

Receipt

The samples were received on 4/28/2022 9:07 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 9.8° C and 11.9° C.

Metals

Method 6020: The method blank for preparation batch 400-576023 and analytical batch 400-576143 contained Calcium above the reporting limit (RL). Associated sample(s) were not re-extracted and/or re-analyzed because results were greater than 10X the value found in the method blank.

Method 6020: The continuing calibration blank (CCB) for analytical batch 400-576309 contained Calcium above the reporting limit (RL). All reported samples associated with this CCB were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCB; therefore, re-analysis of samples was not performed.

General Chemistry

Method SM 2540C: The sample duplicate (DUP) precision for analytical batch 400-575886 was outside control limits. Sample non-homogeneity is suspected.

Method SM 2540C: The sample duplicate (DUP) precision for analytical batch 400-576207 was outside control limits. Sample non-homogeneity is suspected.

Method SM 4500 SO4 E: Due to the high concentration of Sulfate, the matrix spike / matrix spike duplicate (MS/MSD) for analytical batch 400-576114 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

3

4

5

6

_

9

10

12

13

Detection Summary

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR

Job ID: 400-219114-1 SDG: CCPC, Warwick GA

Client Sample ID: DUP-18

Lab Sample ID: 400-219114-1

Analyte	Result Q	ualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.014		0.0025	0.00070	mg/L	5	_	6020	Total
									Recoverable
Boron	0.14		0.050	0.0012	mg/L	5		6020	Total
									Recoverable
Calcium	61 B	^2	1.3	0.63	mg/L	25		6020	Total
									Recoverable
Total Dissolved Solids	180		5.0	5.0	mg/L	1		SM 2540C	Total/NA
Chloride	2.6		2.0	1.4	mg/L	1		SM 4500 CI- E	Total/NA
Fluoride	0.082 J		0.10	0.070	mg/L	1		SM 4500 F C	Total/NA
Sulfate	29		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA
Field pH	6.80				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-D2

Lab Sample ID: 400-219114-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.14		0.0025	0.00070	mg/L	5	_	6020	Total
									Recoverable
Boron	0.11		0.050	0.0012	mg/L	5		6020	Total
									Recoverable
Calcium	130	В	1.3	0.63	mg/L	25		6020	Total
									Recoverable
Total Dissolved Solids	440		5.0	5.0	mg/L	1		SM 2540C	Total/NA
Chloride	3.8		2.0	1.4	mg/L	1		SM 4500 CI- E	Total/NA
Sulfate	16		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA
Field pH	6.86				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-D3

Lab Sample ID: 400-219114-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.072		0.0025	0.00070	mg/L		_	6020	Total
									Recoverable
Boron	0.19		0.050	0.0012	mg/L	5		6020	Total
									Recoverable
Calcium	21	В	1.3	0.63	mg/L	25		6020	Total
									Recoverable
Molybdenum	0.0030	J	0.010	0.0013	mg/L	5		6020	Total
									Recoverable
Total Dissolved Solids	280		5.0	5.0	mg/L	1		SM 2540C	Total/NA
Chloride	4.1		2.0	1.4	mg/L	1		SM 4500 CI- E	Total/NA
Fluoride	0.14		0.10	0.070	mg/L	1		SM 4500 F C	Total/NA
Sulfate	33		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA
Field pH	7.32				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-D1

Lab Sample ID: 400-219114-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.015		0.0025	0.00070	mg/L	5	_	6020	Total
									Recoverable
Boron	0.15		0.050	0.0012	mg/L	5		6020	Total
									Recoverable
Calcium	65	В	1.3	0.63	mg/L	25		6020	Total
									Recoverable
Chromium	0.0015	J	0.0025	0.0010	mg/L	5		6020	Total
									Recoverable
Total Dissolved Solids	270		5.0	5.0	mg/L	1		SM 2540C	Total/NA
Chloride	2.9		2.0	1.4	mg/L	1		SM 4500 CI- E	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Pensacola

5/12/2022

Page 4 of 28

2

3

4

0

8

10

11

13

Detection Summary

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-1 Project/Site: Crisp County CCR SDG: CCPC, Warwick GA

Client Sample ID: MW-D1 (Continued)

0.080 J

29

6.73

Lab Sample ID: 400-219114-4 Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** 0.10 0.070 mg/L SM 4500 F C Total/NA 5.0 1.4 mg/L SM 4500 SO4 E Total/NA

Field Sampling

Lab Sample ID: 400-219114-5

SU

Client Sample ID: MW-U1

Analyte

Fluoride Sulfate

Field pH

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Arsenic	0.0019		0.0013	0.0012	mg/L		6020	Total
								Recoverable
Barium	0.0031		0.0025	0.00070	mg/L	5	6020	Total
								Recoverable
Boron	0.0067	J	0.050	0.0012	mg/L	5	6020	Total
								Recoverable
Calcium	34	В	0.25	0.13	mg/L	5	6020	Total
								Recoverable
Chromium	0.0026		0.0025	0.0010	mg/L	5	6020	Total
								Recoverable
Total Dissolved Solids	98		5.0	5.0	mg/L	1	SM 2540C	Total/NA
Chloride	1.9	J	2.0	1.4	mg/L	1	SM 4500 CI- E	Total/NA
Fluoride	0.070	J	0.10	0.070	mg/L	1	SM 4500 F C	Total/NA
Sulfate	4.3	J	5.0	1.4	mg/L	1	SM 4500 SO4 E	Total/NA
Field pH	8.10				SU	1	Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Total/NA

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR

Job ID: 400-219114-1 SDG: CCPC, Warwick GA

Method	Method Description	Protocol	Laboratory
6020	Metals (ICP/MS)	SW846	TAL PEN
7470A	Mercury (CVAA)	SW846	TAL PEN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PEN
SM 4500 CI- E	Chloride, Total	SM	TAL PEN
SM 4500 F C	Fluoride	SM	TAL PEN
SM 4500 SO4 E	Sulfate, Total	SM	TAL PEN
Field Sampling	Field Sampling	EPA	TAL PEN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PEN
7470A	Preparation, Mercury	SW846	TAL PEN

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Eurofins Pensacola

Page 6 of 28

5/12/2022

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR

Job ID: 400-219114-1 SDG: CCPC, Warwick GA

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-219114-1	DUP-18	Water	04/26/22 00:01	04/28/22 09:07
400-219114-2	MW-D2	Water	04/26/22 14:01	04/28/22 09:07
400-219114-3	MW-D3	Water	04/26/22 15:50	04/28/22 09:07
400-219114-4	MW-D1	Water	04/26/22 12:00	04/28/22 09:07
400-219114-5	MW-U1	Water	04/26/22 10:30	04/28/22 09:07

6

7

8

40

11

Client: Geosyntec Consultants, Inc.

Project/Site: Crisp County CCR

Job ID: 400-219114-1
SDG: CCPC, Warwick GA

Client Sample ID: DUP-18

Date Collected: 04/26/22 00:01 Date Received: 04/28/22 09:07 Lab Sample ID: 400-219114-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.0025	0.0015	mg/L		05/02/22 12:01	05/03/22 02:02	5
Arsenic	ND		0.0013	0.0012	mg/L		05/02/22 12:01	05/03/22 02:02	5
Barium	0.014		0.0025	0.00070	mg/L		05/02/22 12:01	05/03/22 02:02	5
Beryllium	ND		0.0020	0.00092	mg/L		05/02/22 12:01	05/03/22 02:02	5
Boron	0.14		0.050	0.0012	mg/L		05/02/22 12:01	05/03/22 02:02	5
Cadmium	ND		0.0010	0.00065	mg/L		05/02/22 12:01	05/03/22 02:02	5
Calcium	61	B ^2	1.3	0.63	mg/L		05/02/22 12:01	05/03/22 20:12	25
Chromium	ND		0.0025	0.0010	mg/L		05/02/22 12:01	05/03/22 02:02	5
Cobalt	ND		0.0025	0.00056	mg/L		05/02/22 12:01	05/03/22 02:02	5
Lead	ND		0.0013	0.00081	mg/L		05/02/22 12:01	05/03/22 02:02	5
Lithium	ND		0.0025	0.0049	mg/L		05/02/22 12:01	05/03/22 02:02	5
Molybdenum	ND		0.010	0.0013	mg/L		05/02/22 12:01	05/03/22 02:02	5
Selenium	ND		0.0013	0.00082	mg/L		05/02/22 12:01	05/03/22 02:02	5
Thallium	ND		0.00050	0.00046	mg/L		05/02/22 12:01	05/03/22 02:02	5
Method: 7470A - Mercury (CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00015	mg/L		05/03/22 10:38	05/03/22 16:59	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	180		5.0	5.0	mg/L			04/29/22 16:51	1
Chloride	2.6		2.0	1.4	mg/L			05/03/22 00:25	1
Fluoride	0.082	J	0.10	0.070	mg/L			05/09/22 12:55	1
Sulfate	29		5.0	1.4	mg/L			05/03/22 02:55	1
Method: Field Sampling - F	ield Sampling								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.80				SU			04/25/22 23:01	

2

5

7

0

10

11

12

IJ

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-1 Project/Site: Crisp County CCR SDG: CCPC, Warwick GA

Client Sample ID: MW-D2

Date Collected: 04/26/22 14:01 Date Received: 04/28/22 09:07 Lab Sample ID: 400-219114-2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.0025	0.0015	mg/L		05/02/22 12:01	05/03/22 02:25	5
Arsenic	ND		0.0013	0.0012	mg/L		05/02/22 12:01	05/04/22 15:22	5
Barium	0.14		0.0025	0.00070	mg/L		05/02/22 12:01	05/03/22 02:25	5
Beryllium	ND		0.0020	0.00092	mg/L		05/02/22 12:01	05/03/22 02:25	5
Boron	0.11		0.050	0.0012	mg/L		05/02/22 12:01	05/03/22 02:25	5
Cadmium	ND		0.0010	0.00065	mg/L		05/02/22 12:01	05/03/22 02:25	5
Calcium	130	В	1.3	0.63	mg/L		05/02/22 12:01	05/03/22 20:31	25
Chromium	ND		0.0025	0.0010	mg/L		05/02/22 12:01	05/03/22 02:25	5
Cobalt	ND		0.0025	0.00056	mg/L		05/02/22 12:01	05/03/22 02:25	5
Lead	ND		0.0013	0.00081	mg/L		05/02/22 12:01	05/03/22 02:25	5
Lithium	ND		0.0025	0.0049	mg/L		05/02/22 12:01	05/03/22 02:25	5
Molybdenum	ND		0.010	0.0013	mg/L		05/02/22 12:01	05/03/22 02:25	5
Selenium	ND		0.0013	0.00082	mg/L		05/02/22 12:01	05/03/22 02:25	5
Thallium	ND		0.00050	0.00046	mg/L		05/02/22 12:01	05/03/22 02:25	5
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00015	mg/L		05/03/22 10:38	05/03/22 17:01	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	440		5.0	5.0	mg/L			05/03/22 14:20	1
Chloride	3.8		2.0	1.4	mg/L			05/03/22 00:25	1
Fluoride	ND		0.10	0.070	mg/L			04/29/22 11:57	1
Sulfate	16		5.0	1.4	mg/L			05/03/22 02:55	1
Method: Field Sampling - Field Sa	mplina								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.86				SU			04/26/22 13:01	1

Client: Geosyntec Consultants, Inc.

Project/Site: Crisp County CCR

Job ID: 400-219114-1
SDG: CCPC, Warwick GA

Client Sample ID: MW-D3

Date Collected: 04/26/22 15:50 Date Received: 04/28/22 09:07 Lab Sample ID: 400-219114-3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.0025	0.0015	mg/L		05/02/22 12:01	05/03/22 02:29	- 5
Arsenic	ND		0.0013	0.0012	mg/L		05/02/22 12:01	05/03/22 02:29	5
Barium	0.072		0.0025	0.00070	mg/L		05/02/22 12:01	05/03/22 02:29	5
Beryllium	ND		0.0020	0.00092	mg/L		05/02/22 12:01	05/03/22 02:29	5
Boron	0.19		0.050	0.0012	mg/L		05/02/22 12:01	05/03/22 02:29	5
Cadmium	ND		0.0010	0.00065	mg/L		05/02/22 12:01	05/03/22 02:29	5
Calcium	21	В	1.3	0.63	mg/L		05/02/22 12:01	05/03/22 20:35	25
Chromium	ND		0.0025	0.0010	mg/L		05/02/22 12:01	05/03/22 02:29	5
Cobalt	ND		0.0025	0.00056	mg/L		05/02/22 12:01	05/03/22 02:29	5
Lead	ND		0.0013	0.00081	mg/L		05/02/22 12:01	05/03/22 02:29	5
Lithium	ND		0.0025	0.0049	mg/L		05/02/22 12:01	05/03/22 02:29	5
Molybdenum	0.0030	J	0.010	0.0013	mg/L		05/02/22 12:01	05/03/22 02:29	5
Selenium	ND		0.0013	0.00082	mg/L		05/02/22 12:01	05/03/22 02:29	5
Thallium	ND		0.00050	0.00046	mg/L		05/02/22 12:01	05/03/22 02:29	5
Method: 7470A - Mercury (CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00015	mg/L		05/03/22 10:38	05/03/22 17:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	280		5.0	5.0	mg/L			05/03/22 14:20	1
Chloride	4.1		2.0	1.4	mg/L			05/03/22 00:25	1
Fluoride	0.14		0.10	0.070	mg/L			04/29/22 11:49	1
Sulfate	33		5.0	1.4	mg/L			05/03/22 02:55	1
Method: Field Sampling - F	ield Sampling								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.32				SU			04/26/22 14:50	

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-1 Project/Site: Crisp County CCR SDG: CCPC, Warwick GA

Client Sample ID: MW-D1

Date Collected: 04/26/22 12:00 Date Received: 04/28/22 09:07

Lab Sample ID: 400-219114-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.0025	0.0015	mg/L		05/02/22 12:01	05/03/22 02:32	
Arsenic	ND		0.0013	0.0012	mg/L		05/02/22 12:01	05/03/22 02:32	5
Barium	0.015		0.0025	0.00070	mg/L		05/02/22 12:01	05/03/22 02:32	5
Beryllium	ND		0.0020	0.00092	mg/L		05/02/22 12:01	05/03/22 02:32	5
Boron	0.15		0.050	0.0012	mg/L		05/02/22 12:01	05/03/22 02:32	5
Cadmium	ND		0.0010	0.00065	mg/L		05/02/22 12:01	05/03/22 02:32	5
Calcium	65	В	1.3	0.63	mg/L		05/02/22 12:01	05/03/22 20:41	25
Chromium	0.0015	J	0.0025	0.0010	mg/L		05/02/22 12:01	05/03/22 02:32	5
Cobalt	ND		0.0025	0.00056	mg/L		05/02/22 12:01	05/03/22 02:32	5
Lead	ND		0.0013	0.00081	mg/L		05/02/22 12:01	05/03/22 02:32	5
Lithium	ND		0.0025	0.0049	mg/L		05/02/22 12:01	05/03/22 20:38	5
Molybdenum	ND		0.010	0.0013	mg/L		05/02/22 12:01	05/03/22 02:32	5
Selenium	ND		0.0013	0.00082	mg/L		05/02/22 12:01	05/03/22 02:32	5
Thallium	ND		0.00050	0.00046	mg/L		05/02/22 12:01	05/03/22 02:32	5
Method: 7470A - Mercury (CV	4A)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00015	mg/L		05/03/22 10:38	05/03/22 17:05	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	270		5.0	5.0	mg/L			05/03/22 14:20	1
Chloride	2.9		2.0	1.4	mg/L			05/03/22 00:25	1
Fluoride	0.080	J	0.10	0.070	mg/L			04/29/22 11:53	1
Sulfate	29		5.0	1.4	mg/L			05/03/22 02:55	1
Method: Field Sampling - Fiel	d Sampling								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.73				SU			04/26/22 11:00	1

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-1 Project/Site: Crisp County CCR SDG: CCPC, Warwick GA

Client Sample ID: MW-U1

Date Collected: 04/26/22 10:30 Date Received: 04/28/22 09:07

Lab Sample ID: 400-219114-5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.0025	0.0015	mg/L		05/02/22 12:01	05/03/22 02:35	5
Arsenic	0.0019		0.0013	0.0012	mg/L		05/02/22 12:01	05/03/22 02:35	5
Barium	0.0031		0.0025	0.00070	mg/L		05/02/22 12:01	05/03/22 02:35	5
Beryllium	ND		0.0020	0.00092	mg/L		05/02/22 12:01	05/03/22 02:35	5
Boron	0.0067	J	0.050	0.0012	mg/L		05/02/22 12:01	05/03/22 02:35	5
Cadmium	ND		0.0010	0.00065	mg/L		05/02/22 12:01	05/03/22 20:44	5
Calcium	34	В	0.25	0.13	mg/L		05/02/22 12:01	05/03/22 20:44	5
Chromium	0.0026		0.0025	0.0010	mg/L		05/02/22 12:01	05/03/22 02:35	5
Cobalt	ND		0.0025	0.00056	mg/L		05/02/22 12:01	05/03/22 02:35	5
Lead	ND		0.0013	0.00081	mg/L		05/02/22 12:01	05/03/22 02:35	5
Lithium	ND		0.0025	0.0049	mg/L		05/02/22 12:01	05/03/22 02:35	5
Molybdenum	ND		0.010	0.0013	mg/L		05/02/22 12:01	05/03/22 02:35	5
Selenium	ND		0.0013	0.00082	mg/L		05/02/22 12:01	05/03/22 02:35	5
Thallium	ND		0.00050	0.00046	mg/L		05/02/22 12:01	05/03/22 02:35	5
Method: 7470A - Mercury (C	VAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00015	mg/L		05/03/22 10:38	05/03/22 17:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	98		5.0	5.0	mg/L			05/03/22 14:20	1
Chloride	1.9	J	2.0	1.4	mg/L			05/03/22 00:25	1
Fluoride	0.070	J	0.10	0.070	mg/L			04/29/22 12:01	1
Sulfate	4.3	J	5.0	1.4	mg/L			05/03/22 02:55	1
Method: Field Sampling - Fi	eld Sampling								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	8.10				SU			04/26/22 09:30	

Definitions/Glossary

Client: Geosyntec Consultants, Inc.

Project/Site: Crisp County CCR

Job ID: 400-219114-1
SDG: CCPC, Warwick GA

Qualifiers

Metals	
Qualifier	Qualifier Description
^2	Calibration Blank (ICB and/or CCB) is outside acceptance limits.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
0	the constant of

General Chemistry

RL

RPD

TEF TEQ

TNTC

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
F3	Duplicate RPD exceeds the control limit
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Eurofins Pensacola

Page 13 of 28

9

e

4

5

Ţ

_

1 0

4.0

13

Job ID: 400-219114-1

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR SDG: CCPC, Warwick GA

Client Sample ID: DUP-18 Date Collected: 04/26/22 00:01 Date Received: 04/28/22 09:07

Lab Sample ID: 400-219114-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	576143	05/03/22 02:02	KIS	TAL PEN
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		25	576309	05/03/22 20:12	KIS	TAL PEN
Total/NA	Prep	7470A			576157	05/03/22 10:38	NET	TAL PEN
Total/NA	Analysis	7470A		1	576320	05/03/22 16:59	NET	TAL PEN
Total/NA	Analysis	SM 2540C		1	575886	04/29/22 16:51	VB	TAL PEN
Total/NA	Analysis	SM 4500 CI- E		1	576110	05/03/22 00:25	DN1	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	576933	05/09/22 12:55	KB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	576114	05/03/22 02:55	DN1	TAL PEN
Total/NA	Analysis	Field Sampling		1	576172	04/25/22 23:01	EHS	TAL PEN

Client Sample ID: MW-D2 Lab Sample ID: 400-219114-2 Date Collected: 04/26/22 14:01

Matrix: Water

Date Received: 04/28/22 09:07

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	576457	05/04/22 15:22	KIS	TAL PEN
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	576143	05/03/22 02:25	KIS	TAL PEN
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		25	576309	05/03/22 20:31	KIS	TAL PEN
Total/NA	Prep	7470A			576157	05/03/22 10:38	NET	TAL PEN
Total/NA	Analysis	7470A		1	576320	05/03/22 17:01	NET	TAL PEN
Total/NA	Analysis	SM 2540C		1	576207	05/03/22 14:20	VB	TAL PEN
Total/NA	Analysis	SM 4500 CI- E		1	576110	05/03/22 00:25	DN1	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	575844	04/29/22 11:57	KB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	576114	05/03/22 02:55	DN1	TAL PEN
Total/NA	Analysis	Field Sampling		1	576172	04/26/22 13:01	EHS	TAL PEN

Client Sample ID: MW-D3 Lab Sample ID: 400-219114-3 Date Collected: 04/26/22 15:50

Date Received: 04/28/22 09:07

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	576143	05/03/22 02:29	KIS	TAL PEN
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		25	576309	05/03/22 20:35	KIS	TAL PEN
Total/NA	Prep	7470A			576157	05/03/22 10:38	NET	TAL PEN
Total/NA	Analysis	7470A		1	576320	05/03/22 17:03	NET	TAL PEN
Total/NA	Analysis	SM 2540C		1	576207	05/03/22 14:20	VB	TAL PEN
Total/NA	Analysis	SM 4500 CI- E		1	576110	05/03/22 00:25	DN1	TAL PEN

Eurofins Pensacola

Page 14 of 28

Lab Chronicle

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-1 Project/Site: Crisp County CCR SDG: CCPC, Warwick GA

Client Sample ID: MW-D3

Lab Sample ID: 400-219114-3

Matrix: Water

Date Collected: 04/26/22 15:50 Date Received: 04/28/22 09:07

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 F C		1	575844	04/29/22 11:49	KB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	576114	05/03/22 02:55	DN1	TAL PEN
Total/NA	Analysis	Field Sampling		1	576172	04/26/22 14:50	EHS	TAL PEN

Lab Sample ID: 400-219114-4 Client Sample ID: MW-D1

Matrix: Water

Date Collected: 04/26/22 12:00 Date Received: 04/28/22 09:07

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	576143	05/03/22 02:32	KIS	TAL PEN
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	576309	05/03/22 20:38	KIS	TAL PEN
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		25	576309	05/03/22 20:41	KIS	TAL PEN
Total/NA	Prep	7470A			576157	05/03/22 10:38	NET	TAL PEN
Total/NA	Analysis	7470A		1	576320	05/03/22 17:05	NET	TAL PEN
Total/NA	Analysis	SM 2540C		1	576207	05/03/22 14:20	VB	TAL PEN
Total/NA	Analysis	SM 4500 CI- E		1	576110	05/03/22 00:25	DN1	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	575844	04/29/22 11:53	KB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	576114	05/03/22 02:55	DN1	TAL PEN
Total/NA	Analysis	Field Sampling		1	576172	04/26/22 11:00	EHS	TAL PEN

Client Sample ID: MW-U1 Lab Sample ID: 400-219114-5

Date Collected: 04/26/22 10:30

Date Received: 04/28/22 09:07

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	576143	05/03/22 02:35	KIS	TAL PEN
Total Recoverable	Prep	3005A			576023	05/02/22 12:01	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	576309	05/03/22 20:44	KIS	TAL PEN
Total/NA	Prep	7470A			576157	05/03/22 10:38	NET	TAL PEN
Total/NA	Analysis	7470A		1	576320	05/03/22 17:07	NET	TAL PEN
Total/NA	Analysis	SM 2540C		1	576207	05/03/22 14:20	VB	TAL PEN
Total/NA	Analysis	SM 4500 CI- E		1	576110	05/03/22 00:25	DN1	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	575844	04/29/22 12:01	KB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	576114	05/03/22 02:55	DN1	TAL PEN
Total/NA	Analysis	Field Sampling		1	576172	04/26/22 09:30	EHS	TAL PEN

Laboratory References:

TAL PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Eurofins Pensacola

Matrix: Water

5/12/2022

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR

Job ID: 400-219114-1 SDG: CCPC, Warwick GA

Metals

Prep Batch: 576023

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-1	DUP-18	Total Recoverable	Water	3005A	
400-219114-2	MW-D2	Total Recoverable	Water	3005A	
400-219114-3	MW-D3	Total Recoverable	Water	3005A	
400-219114-4	MW-D1	Total Recoverable	Water	3005A	
400-219114-5	MW-U1	Total Recoverable	Water	3005A	
MB 400-576023/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-576023/2-A ^5	Lab Control Sample	Total Recoverable	Water	3005A	
400-219114-1 MS	DUP-18	Total Recoverable	Water	3005A	
400-219114-1 MSD	DUP-18	Total Recoverable	Water	3005A	

Analysis Batch: 576143

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-1	DUP-18	Total Recoverable	Water	6020	576023
400-219114-2	MW-D2	Total Recoverable	Water	6020	576023
400-219114-3	MW-D3	Total Recoverable	Water	6020	576023
400-219114-4	MW-D1	Total Recoverable	Water	6020	576023
400-219114-5	MW-U1	Total Recoverable	Water	6020	576023
MB 400-576023/1-A ^5	Method Blank	Total Recoverable	Water	6020	576023
LCS 400-576023/2-A ^5	Lab Control Sample	Total Recoverable	Water	6020	576023
400-219114-1 MS	DUP-18	Total Recoverable	Water	6020	576023
400-219114-1 MSD	DUP-18	Total Recoverable	Water	6020	576023

Prep Batch: 576157

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-1	DUP-18	Total/NA	Water	7470A	
400-219114-2	MW-D2	Total/NA	Water	7470A	
400-219114-3	MW-D3	Total/NA	Water	7470A	
400-219114-4	MW-D1	Total/NA	Water	7470A	
400-219114-5	MW-U1	Total/NA	Water	7470A	
MB 400-576157/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-576157/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-219183-T-6-C MS	Matrix Spike	Total/NA	Water	7470A	
400-219183-T-6-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 576309

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-1	DUP-18	Total Recoverable	Water	6020	576023
400-219114-2	MW-D2	Total Recoverable	Water	6020	576023
400-219114-3	MW-D3	Total Recoverable	Water	6020	576023
400-219114-4	MW-D1	Total Recoverable	Water	6020	576023
400-219114-4	MW-D1	Total Recoverable	Water	6020	576023
400-219114-5	MW-U1	Total Recoverable	Water	6020	576023
400-219114-1 MS	DUP-18	Total Recoverable	Water	6020	576023
400-219114-1 MSD	DUP-18	Total Recoverable	Water	6020	576023

Analysis Batch: 576320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-1	DUP-18	Total/NA	Water	7470A	576157
400-219114-2	MW-D2	Total/NA	Water	7470A	576157
400-219114-3	MW-D3	Total/NA	Water	7470A	576157
400-219114-4	MW-D1	Total/NA	Water	7470A	576157

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR

Job ID: 400-219114-1 SDG: CCPC, Warwick GA

Metals (Continued)

Analysis Batch: 576320 (Continued)

Lab Sample ID 400-219114-5	Client Sample ID MW-U1	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch 576157
MB 400-576157/14-A	Method Blank	Total/NA	Water	7470A	576157
LCS 400-576157/15-A	Lab Control Sample	Total/NA	Water	7470A	576157
400-219183-T-6-C MS	Matrix Spike	Total/NA	Water	7470A	576157
400-219183-T-6-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	576157

Analysis Batch: 576457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-2	MW-D2	Total Recoverable	Water	6020	576023

General Chemistry

Analysis Batch: 575844

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-2	MW-D2	Total/NA	Water	SM 4500 F C	
400-219114-3	MW-D3	Total/NA	Water	SM 4500 F C	
400-219114-4	MW-D1	Total/NA	Water	SM 4500 F C	
400-219114-5	MW-U1	Total/NA	Water	SM 4500 F C	
MB 400-575844/3	Method Blank	Total/NA	Water	SM 4500 F C	
LCS 400-575844/6	Lab Control Sample	Total/NA	Water	SM 4500 F C	
400-218894-A-9 MS	Matrix Spike	Total/NA	Water	SM 4500 F C	
400-218894-A-9 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 F C	

Analysis Batch: 575886

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-1	DUP-18	Total/NA	Water	SM 2540C	- <u></u>
MB 400-575886/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-575886/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-218991-C-1 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 576110

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-1	DUP-18	Total/NA	Water	SM 4500 CI- E	
400-219114-2	MW-D2	Total/NA	Water	SM 4500 CI- E	
400-219114-3	MW-D3	Total/NA	Water	SM 4500 CI- E	
400-219114-4	MW-D1	Total/NA	Water	SM 4500 CI- E	
400-219114-5	MW-U1	Total/NA	Water	SM 4500 CI- E	
MB 400-576110/6	Method Blank	Total/NA	Water	SM 4500 CI- E	
LCS 400-576110/7	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
MRL 400-576110/3	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
400-219148-D-2 MS	Matrix Spike	Total/NA	Water	SM 4500 CI- E	
400-219148-D-2 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CI- E	

Analysis Batch: 576114

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Pre	Prep Batch
400-219114-1	DUP-18	Total/NA	Water	SM 4500 SO4 E	
400-219114-2	MW-D2	Total/NA	Water	SM 4500 SO4 E	
400-219114-3	MW-D3	Total/NA	Water	SM 4500 SO4 E	
400-219114-4	MW-D1	Total/NA	Water	SM 4500 SO4 E	
400-219114-5	MW-U1	Total/NA	Water	SM 4500 SO4 E	
MB 400-576114/5	Method Blank	Total/NA	Water	SM 4500 SO4 E	

Eurofins Pensacola

5/12/2022

Page 17 of 28

2

3

4

6

8

11

12

13

QC Association Summary

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-1 Project/Site: Crisp County CCR SDG: CCPC, Warwick GA

General Chemistry (Continued)

Analysis Batch: 576114 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch	
LCS 400-576114/6	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
MRL 400-576114/7	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
180-137057-A-23 MS	Matrix Spike	Total/NA	Water	SM 4500 SO4 E	
180-137057-A-23 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 SO4 E	

Analysis Batch: 576207

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-2	MW-D2	Total/NA	Water	SM 2540C	
400-219114-3	MW-D3	Total/NA	Water	SM 2540C	
400-219114-4	MW-D1	Total/NA	Water	SM 2540C	
400-219114-5	MW-U1	Total/NA	Water	SM 2540C	
MB 400-576207/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-576207/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-219228-A-2 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 576933

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-1	DUP-18	Total/NA	Water	SM 4500 F C	
MB 400-576933/1	Method Blank	Total/NA	Water	SM 4500 F C	
LCS 400-576933/4	Lab Control Sample	Total/NA	Water	SM 4500 F C	
400-218596-K-1 MS	Matrix Spike	Total/NA	Water	SM 4500 F C	
400-218596-K-1 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 F C	

Field Service / Mobile Lab

Analysis Batch: 576172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-1	DUP-18	Total/NA	Water	Field Sampling	•
400-219114-2	MW-D2	Total/NA	Water	Field Sampling	
400-219114-3	MW-D3	Total/NA	Water	Field Sampling	
400-219114-4	MW-D1	Total/NA	Water	Field Sampling	
400-219114-5	MW-U1	Total/NA	Water	Field Sampling	

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-1 Project/Site: Crisp County CCR SDG: CCPC, Warwick GA

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 400-576023/1-A ^5

Matrix: Water

Analysis Batch: 576143

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 576023

red Analyzed	Dil Faa
red Analyzed	Dil Faa
	Dil Fac
2 12:01 05/03/22 01:56	5
12:01 05/03/22 01:56	5
12:01 05/03/22 01:56	5
12:01 05/03/22 01:56	5
12:01 05/03/22 01:56	5
12:01 05/03/22 01:56	5
12:01 05/03/22 01:56	5
12:01 05/03/22 01:56	5
12:01 05/03/22 01:56	5
12:01 05/03/22 01:56	5
2 12:01 05/03/22 01:56	5
2 12:01 05/03/22 01:56	5
12:01 05/03/22 01:56	5
12:01 05/03/22 01:56	5
	2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56 2 12:01 05/03/22 01:56

Lab Sample ID: LCS 400-576023/2-A ^5

Matrix: Water

Analysis Batch: 576143

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 576023

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.0500	0.0544		mg/L		109	80 - 120	
Arsenic	0.0500	0.0524		mg/L		105	80 - 120	
Barium	0.0500	0.0526		mg/L		105	80 - 120	
Beryllium	0.0500	0.0522		mg/L		104	80 - 120	
Boron	0.100	0.0898		mg/L		90	80 - 120	
Cadmium	0.0500	0.0537		mg/L		107	80 - 120	
Calcium	5.00	5.16		mg/L		103	80 - 120	
Chromium	0.0500	0.0519		mg/L		104	80 - 120	
Cobalt	0.0500	0.0492		mg/L		98	80 - 120	
Lead	0.0500	0.0509		mg/L		102	80 - 120	
Lithium	0.0500	0.0492		mg/L		98	80 - 120	
Molybdenum	0.0500	0.0498		mg/L		100	80 - 120	
Selenium	0.0500	0.0483		mg/L		97	80 - 120	
Thallium	0.0100	0.00983		mg/L		98	80 - 120	

Lab Sample ID: 400-219114-1 MS

Matrix: Water

Analysis Batch: 576143

Client Sample ID: DUP-18 Prep Type: Total Recoverable

Prep Batch: 576023

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	ND		0.0500	0.0546		mg/L		109	75 - 125	
Arsenic	ND		0.0500	0.0505		mg/L		101	75 - 125	
Barium	0.014		0.0500	0.0665		mg/L		104	75 - 125	
Beryllium	ND		0.0500	0.0530		mg/L		106	75 - 125	
Boron	0.14		0.100	0.243		mg/L		107	75 - 125	
Cadmium	ND		0.0500	0.0517		mg/L		103	75 - 125	
Chromium	ND		0.0500	0.0517		mg/L		103	75 - 125	
Cobalt	ND		0.0500	0.0492		mg/L		98	75 - 125	
Lead	ND		0.0500	0.0511		mg/L		102	75 - 125	

Eurofins Pensacola

Page 19 of 28

Job ID: 400-219114-1 SDG: CCPC, Warwick GA

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-219114-1 MS **Matrix: Water**

Analysis Batch: 576143

Client: Geosyntec Consultants, Inc.

Project/Site: Crisp County CCR

Client Sample ID: DUP-18 Prep Type: Total Recoverable Prep Batch: 576023 Spike Sample Sample

	Sample	Sample	Spike	IVIO	IVIO				/orec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lithium	ND		0.0500	0.0483		mg/L		97	75 - 125	
Molybdenum	ND		0.0500	0.0504		mg/L		101	75 - 125	
Selenium	ND		0.0500	0.0498		mg/L		100	75 - 125	
Thallium	ND		0.0100	0.0103		mg/L		103	75 - 125	

Lab Sample ID: 400-219114-1 MS

Matrix: Water

Analysis Batch: 576309									Prep Ba	atch: 576023
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	61	B ^2	5.00	65.8	4	ma/l		101	75 - 125	

Lab Sample ID: 400-219114-1 MSD

Matrix: Water Prep Type: Total Recoverable

Analysis Batch: 576143									Prep Ba	atch: 57	76023
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		0.0500	0.0546		mg/L		109	75 - 125	0	20
Arsenic	ND		0.0500	0.0500		mg/L		100	75 - 125	1	20
Barium	0.014		0.0500	0.0680		mg/L		107	75 - 125	2	20
Beryllium	ND		0.0500	0.0526		mg/L		105	75 - 125	1	20
Boron	0.14		0.100	0.237		mg/L		101	75 - 125	2	20
Cadmium	ND		0.0500	0.0512		mg/L		102	75 - 125	1	20
Chromium	ND		0.0500	0.0526		mg/L		105	75 - 125	2	20
Cobalt	ND		0.0500	0.0491		mg/L		98	75 - 125	0	20
Lead	ND		0.0500	0.0503		mg/L		101	75 - 125	2	20
Lithium	ND		0.0500	0.0477		mg/L		95	75 - 125	1	20
Molybdenum	ND		0.0500	0.0516		mg/L		103	75 - 125	2	20
Selenium	ND		0.0500	0.0496		mg/L		99	75 - 125	1	20
Thallium	ND		0.0100	0.00998		mg/L		100	75 - 125	3	20

Lab Sample ID: 400-219114-1 MSD

Matrix: Water							F	rep Ty	pe: Total I	Recove	erable
Analysis Batch: 576309									Prep Ba	itch: 57	76023
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	61	B ^2	5.00	61.4	4	mg/L		13	75 - 125	7	20

Method: 7470A - Mercury (CVAA)

ah Sample ID: MR 400-576157/14-A

Lab Sample ID. MB 400-576157/14-A	Chefft Sample ID. Wethou Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 576320	Prep Batch: 576157
MB MB	

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Mercury ND 0.00020 0.00015 mg/L 05/03/22 10:38 05/03/22 16:26

Eurofins Pensacola

Page 20 of 28

Client Sample ID: DUP-18

Client Sample ID: DUP-18

Client Sample ID: DUP-18

Prep Type: Total Recoverable

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR

Job ID: 400-219114-1 SDG: CCPC, Warwick GA

> Prep Type: Total/NA **Prep Batch: 576157**

> Prep Type: Total/NA

Prep Batch: 576157

Prep Type: Total/NA

Prep Batch: 576157

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 400-576157/15-A

Matrix: Water

Analyte

Mercury

Analyte

Mercury

Analyte

Mercury

Analysis Batch: 576320

Spike Added 0.00101

LCS LCS Result Qualifier 0.00110

MS MS

Unit mg/L

%Rec 109

Limits 80 - 120

Client Sample ID: Matrix Spike

%Rec

Client Sample ID: Lab Control Sample

Lab Sample ID: 400-219183-T-6-C MS

Matrix: Water

Analysis Batch: 576320

Sample Sample Result Qualifier

Spike Added 0.00201

0.00191

Result Qualifier Unit mg/L

D %Rec 95

80 - 120

%Rec

Client Sample ID: Method Blank

%Rec Limits

Lab Sample ID: 400-219183-T-6-D MSD

Matrix: Water

Analysis Batch: 576320

Sample Sample Result Qualifier ND

ND

Spike Added 0.00201

0.00191

MSD MSD Result Qualifier

Unit mg/L

Limits %Rec 95

Client Sample ID: Matrix Spike Duplicate

RPD Limit 80 - 120

RPD

20

Dil Fac

RPD

Limit

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 400-575886/1

Matrix: Water

Analysis Batch: 575886

MB MB

Analyte Total Dissolved Solids

 $\overline{\mathsf{ND}}$

Lab Sample ID: LCS 400-575886/2

Matrix: Water

Analysis Batch: 575886

Analyte Total Dissolved Solids

Lab Sample ID: 400-218991-C-1 DU **Matrix: Water**

Analysis Batch: 575886

Analyte Total Dissolved Solids

Lab Sample ID: MB 400-576207/1 **Matrix: Water**

Analysis Batch: 576207

Total Dissolved Solids

Sample Sample Result Qualifier

ND

1500

Result Qualifier RL 5.0

Spike

Added

293

LCS LCS

DU DU

1410 F3

Result Qualifier

296

Result Qualifier

5.0 mg/L

MDL Unit

Unit

mg/L

Unit

mg/L

Prepared

Client Sample ID: Lab Control Sample

Analyzed

04/29/22 16:51

Prep Type: Total/NA

Prep Type: Total/NA

%Rec %Rec Limits 101 78 - 122

Client Sample ID: Duplicate

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

MR MR Result Qualifier RL

5.0

MDL Unit 5.0 mg/L Prepared

Analyzed Dil Fac 05/03/22 14:20

RPD

Eurofins Pensacola

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-1 SDG: CCPC, Warwick GA Project/Site: Crisp County CCR

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 400-576207/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 576207

Spike LCS LCS %Rec Result Qualifier Added Unit %Rec Limits Analyte D 78 - 122 **Total Dissolved Solids** 293 252 mg/L 86

Lab Sample ID: 400-219228-A-2 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 576207

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier Unit D RPD Limit Analyte 1400 500 F3 **Total Dissolved Solids** mg/L 95

Method: SM 4500 Cl- E - Chloride, Total

Lab Sample ID: MB 400-576110/6 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 576110

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed 05/03/22 00:23 Chloride ND 2.0 1.4 mg/L

Lab Sample ID: LCS 400-576110/7 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 576110

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits Chloride 30.0 30.4 mg/L 101 90 - 110

Lab Sample ID: MRL 400-576110/3 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 576110

MRL MRL Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Chloride 2.00 1.53 J mg/L 76 50 - 150

Lab Sample ID: 400-219148-D-2 MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 576110

Spike MS MS %Rec Sample Sample Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chloride 2.2 10.0 13.4 112 73 - 120 mg/L

Lab Sample ID: 400-219148-D-2 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 576110

RPD Sample Sample Spike MSD MSD %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 2.2 10.0 13.4 112 mg/L 73 - 120 0

Eurofins Pensacola

5/12/2022

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR

Job ID: 400-219114-1 SDG: CCPC, Warwick GA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Matrix Spike

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Method: SM 4500 F C - Fluoride

Lab Sample ID: MB 400-575844/3

Matrix: Water

Analysis Batch: 575844

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac **Prepared** Fluoride 0.10 04/29/22 11:22 ND 0.070 mg/L

Lab Sample ID: LCS 400-575844/6

Matrix: Water

Analysis Batch: 575844

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Fluoride 5.00 5.08 90 - 110 mg/L 102

Lab Sample ID: 400-218894-A-9 MS

Matrix: Water

Analysis Batch: 575844

ı		Sample	Sample	Spike	MS	MS				%Rec	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Fluoride	0.47		1.00	1.30		mg/L		83	75 - 125	_

Lab Sample ID: 400-218894-A-9 MSD

Matrix: Water

Analysis Batch: 575844

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoride	0.47		1.00	1.30		mg/L		83	75 - 125	0	4

Lab Sample ID: MB 400-576933/1

Matrix: Water

Analysis Batch: 576933

	1410	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	ND		0.10	0.070	mg/L			05/09/22 12:55	1

Lab Sample ID: LCS 400-576933/4

Matrix: Water

Analysis Batch: 576933

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride	5.00	5.23		mg/L		105	90 - 110	

Lab Sample ID: 400-218596-K-1 MS

Matrix: Water

Analysis Batch: 576933

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits
naivie result Qualifiei Addeu result Qualifiei diff. d /6rec Liffics

Lab Sample ID: 400-218596-K-1 MSD

Matrix: Water

Analysis Batch: 576933											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoride	0.84		1.00	1.75		mg/L		92	75 - 125	2	4

Eurofins Pensacola

5/12/2022

Page 23 of 28

Prep Type: Total/NA

QC Sample Results

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-1 Project/Site: Crisp County CCR SDG: CCPC, Warwick GA

Method: SM 4500 SO4 E - Sulfate, Total

Lab Sample ID: MB 400-576114/5

Matrix: Water

Analyte Sulfate

Analysis Batch: 576114

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
 ND		5.0	1.4	mg/L			05/03/22 02:55	1

Lab Sample ID: LCS 400-576114/6 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 576114

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	15.0	15.1		ma/L	_	101	90 - 110	

Lab Sample ID: MRL 400-576114/7 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 576114

		Spike	MRL	MKL				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate		5.00	3.66	J	mg/L	_	73	50 - 150	

Lab Sample ID: 180-137057-A-23 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 576114

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	2800	-	250	2360	4	mg/L		-184	77 - 128	

Lab Sample ID: 180-137057-A-23 MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 576114

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	2800		250	2350	4	mg/L		-186	77 - 128	0	5

Client Sample ID: Method Blank

Prep Type: Total/NA

3355 McLemore Drive Pensacola, FL 32514 Phone: 850-474-1001 Fax: 850-478-2671

Chain of Custody Record

eurofins

Environment Testing America

[Client Information Tristin ()				ab PM: Carrier Tracking No(s): COC No: /hitmire, Cheyenne R												
Client Contact: Dawit Yifru	E-Mail:			il:	enne.Whitmire@et.eurofinsus.com						ate of Origin	1:		400-110409-29334.1 Page:		
Company:	10 18- 118	PWSID:	Che	yenne.\	Nhitmir	e@et.	eurofir	nsus.c	com					Page 1 of 1		
Geosyntec Consultants, Inc.	In a contract of						Ar	nalys	is R	eque	ested			Job #:		
1255 Roberts Blvd, NW Suite 200	Due Date Requested:													Preservation Co	odes:	
City: Kennesaw	TAT Requested (days):											M		A - HCL	M - Hexane	
State, Zip:	Standa	rd				Ŷ							<u> </u>	B - NaOH C - Zn Acetate	N - None O - AsNaO2	
GA, 30144 Phone:	Compliance Project: A	Δ Yes Δ No			P. P.	1,Se,								D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3	
678-202-9569	Purchase Order not i	required			28.	P, P							!	F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4	
Email: dyifru@geosyntec.com	WO #:			r No	26Ra2	Co,Li					400.	219114 C	oc /	H - Ascorbic Acid	T - TSP Dodecahydrate U - Acetone	
Project Name: Crisp County CCR	Project #:			or No	Ra2	, C,		olids				1 1	1 8	J - DI Water K - EDTA	V - MCAA W - pH 4-5	
Site	40007960 SSOW#:			9	a228,	S, Ca,		ed Sc		a la			contain	L - EDA	Z - other (specify)	
CCPC, Warwick OA	00011#.	Samp SD (9320_Ra228, Ra226Ra228_GFPC	Sb,As,B,Ba,Be,Ca,Cd,Cr,Co,Li,Pb,Tl,Se,Mo		- Total Dissolved Solids	ride	- Sulfate Field of			of cor	Other:				
		Sample	Matrix	NSW NSW	226, 93	s,B,E	rcun	tal Di	4500_F_C - Fluoride	u i			100			
		Туре	(W=water, S=solid,	FIR.	9315_Ra226,	Sp.	- Mer	. To		ome of			otal Number			
Sample Identification	1 -	mple (C=comp, ime G=grab)	O=waste/oil, BT=Tissue, A=Air)	PRE	9315_Ra	6020 -	7470A	2540C	4500 F	Splai			otal			
		- (98),s	NEW Code.		ie. IN	ט		NI						114 -	nstructions/Note:	
Dup - 18	4/26/22	6	Water	NN	1 0		d	-		0						
MW - D2	4/26/22 2:		Water	NN	1 2		1			-	++	++			080	
MW - D3			Water	11.1	<u> </u>		0	-	00	-	++	++		PH= (0.86	
MW - DI		50 G		NN	-	50	-		0	-			700	PH = -	7.32	
		00 G	Water	NN	1 6	5 Ø	Ø	Ø	0 4	5			Z.Leaner	PH =	6.73	
MW-UI	4/26/22/10	:30 G	Water	NN	1 8	5 0	0	\$ 1	Ø Q	8				PH=	8.10	
			Water							H					0.10	
							\vdash		+			++-				
			: >0	2		+				+				3		
		test	ite	1		-			_	\perp			Phys.			
				1												
													-			
Possible Hazard Identification Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Pois				Sai	mple D	isposa	al (A	fee m	ay be	ass	essed if	samples a	re retain	ned longer than	1 month)	
Deliverable Requested: I. II. IV Other (specify)	on B Unknown	Radiological	<u> </u>									.ab	Arch	hive For	Months	
Empty Kit Relinquished by:	el II			Spe	ecial In:	structio	ons/Q(C Req	uirem	ents:						
Relinquished by:	Date	:		Time:							Method	of Shipment:				
Tristen Opendoeth	Date/Time:	٦ 11:30	Celsus	tic	Receive	d by:						Date/Time	3:		Company	
Relinquished by:	Date/Time:	0, 11,00	Company O	الوك	Receive	1 -0	ux					Date/Time	a.		Comment	
Relinquished by:	Date/Time:		Company							_/		2.0711116			Company	
Custody Spale Interd O. J. J. S. J.			Сопрапу		Receive	a by:			1	1		Date/Time	3 22	09 05	Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					Cooler 1	empera	iture(s)	°C and	Other	Rema	rks: O					
<u> </u>											9	8.		gol I	RIO	

Chain of Custody Record

🔅 eurofins

Environment Testing Аптенса

	Sampler:	^		Lab	PM:							Car	rier Tracking No	n(c):	ICOC No.
Client Information Client Contact:	Tristar) () YY	doct	Whi	tmire,	Chey	enne	R					nor tracking 140	n(3).	COC No: 400-110409-29334.1
Dawit Yifru	Phone:			E-Ma	iil: yenne.	\A/bit	mira@					Sta	te of Origin:		Page:
Company:	410	10	PWSID:	One	yerine.	VVIIII	mireu	yet.et	uronn	isus.c	om				Page 1 of 1
Geosyntec Consultants, Inc. Address:									An	alys	s Re	que	sted		Job#:
1255 Roberts Blvd, NW Suite 200	Due Date Requeste	ed:													Preservation Codes:
City:	TAT Requested (da	ays):													A - HCL M - Hexane
Kennesaw	Stanc	A													B - NaOH N - None
State, Zip: GA, 30144	Compliance Project					ې		e,M							C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S
Phone:	PO #:	λ. Δ 195	A NO		ing.	GFPC		T,S	- 1						E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3
1078-202-9569	Purchase Order	not require	d			28		ď,							G - Amchlor S - H2SO4
Email:	WO #:				2	Ra226Ra228		7,0°							H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetone
dyifru@geosyntec.com Project Name:	2				व द्व	a22(5		g				90	J - DI Water V - MCAA
Crisp County CCR	Project #: 40007960				وَ عَ			S		Solids	١.			i i	K - EDTA W - pH 4-5 L - EDA Z - other (specify)
Site:	SSOW#:				18 8	Ra228,	oride	c, C			Sulfate	3		conta	(//
CCPC, WOUTWICK GA					Sarr	9320	Chloride	6020 - Sb,As,B,Ba,Be,Ca,Cd,Cr,Co,Li,Pb,Tl,Se,Mo		- Total Dissolved	SO4 F.Su	Fiel		300	Other:
		ĺ	Sample	Matrix	B 20	6, 93	ш,	S,B,	Mercury	E	SM4500 SOA F.	g		5	
			Туре	(W=water,	2 E	9315_Ra226,	SM4500_CI_E -	Sb,A	₩.	P.	یٰ ا	i ig		No.	
Sample Identification		Sample	(C=comp,	S≔solid, O≃waste/oil,	8 8	15.	450	02	7470A	2540C	SM4500	dS ₂		is in the second	
Cample Identification	Sample Date	Time	G=grab)	BT=Tissue, A≃Air	后上表	93	S.	90	4	25	N N	19		ő	Special Instructions/Note:
200				<u> </u>											
Dup - 18	4/26/22		G	Water	NN	Ø	1	1	1	1 1	i				PH = 6.80
MW - D2	4/26/22	2:01	G	Water	VI	d	1	1	1	1	1				
MW - D3	1			14/-4	1	1	,	-	-	1	-	+	+		PH = 6.86
	4/26/22	3,20	G	Water	NN	Ø	Ī	1		1	1				PH = 7.32
WM-DI	4/26/22	12:00	G	Water	NN	0	5 1	1	1	1	1				PH= 6.73
MW - UI	2/26/22	10:30	9	Water	NN	n	1	1		i		\forall			
	1000	10	-	Water	1	P		•	-	-	-	+			PH = 8.10
				THE STATE OF											
					Ш										
				14		1									
			Last	1.7					-		_	-	+		
			Colo			_									
					П	Т						1			
Possible Hazard Identification					₩ Sé	mnl	e Disr	nsal	I (A f	Foo m	av bo	2000	scool if com		ned longer than 1 month)
Non-Hazard Flammable Skin Irritant Pois	on B Unkn	own -	Radiologica	ı		<u> </u>	Return	To	liont	cc m	V	0336	osal By Lab	pies are retair	
Deliverable Requested: I II III IV Other (specify)			.aarorogroa		Sr	ecia	Instru	uction	ns/QC	Reg	uirem	ents:	osai By Lab	Arci	hive For Months
Empty Kit Relinguished by:		Data										o			
Relinquished by:	Date/Time:	Date:			Time								Method of Sh	ipment:	
Triston Orndoeth		W22 1	1:20	Company	Jac		eived b		0 1/				D	ate/Time:	Company
Relinquished by:	Date/Time:	0000		Company	UEC		eived b	2d (CX		_		D	ate/Time:	0
Relinquished by:	Data/Time:														Company
	Date/Time:			Company		Rec	eived b	y:			_		D	t 28 .22	09:07 Company
Custody Seals Intact: Custody Seal No.:	- 1 - 1 -			101		Coc	oler Tem	peratu	ure(s)	°C and	Other	Remar		E- I E - D VA	
Δ TES Δ NO													ks: 9.8	°C 1).	9° LIRIO
															Ver: 06/08/2021

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 400-219114-1 SDG Number: CCPC, Warwick GA

List Source: Eurofins Pensacola

Login Number: 219114

List Number: 1

Creator: Roberts, Alexis J

Gleator. Noberts, Alexis 3		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	Water present in cooler; indicates evidence of melted ice.
Cooler Temperature is acceptable.	False	Client notified
Cooler Temperature is recorded.	True	9.8°C, 11.9°C IR10
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	No time on COC or sample containers for Dup-18
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

5

7

9

11

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR

Job ID: 400-219114-1 SDG: CCPC, Warwick GA

Laboratory: Eurofins Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	06-30-22
ANAB	ISO/IEC 17025	L2471	02-23-23
Arkansas DEQ	State	88-0689	09-01-22
California	State	2510	06-30-22
Florida	NELAP	E81010	06-30-22
Georgia	State	E81010(FL)	06-30-22
Illinois	NELAP	200041	10-09-22
Kansas	NELAP	E-10253	10-31-22
Kentucky (UST)	State	53	06-30-22
Kentucky (WW)	State	KY98030	12-31-22
Louisiana	NELAP	30976	06-30-22
Louisiana (DW)	State	LA017	12-31-22
Maryland	State	233	09-30-22
Massachusetts	State	M-FL094	06-30-22
Michigan	State	9912	06-30-22
North Carolina (WW/SW)	State	314	12-31-22
Oklahoma	NELAP	9810	08-31-22
Pennsylvania	NELAP	68-00467	01-31-23
South Carolina	State	96026	06-30-22
Tennessee	State	TN02907	06-30-22
Texas	NELAP	T104704286	09-30-22
US Fish & Wildlife	US Federal Programs	058448	07-31-22
USDA	US Federal Programs	P330-21-00056	05-17-24
Virginia	NELAP	460166	06-14-22
West Virginia DEP	State	136	05-31-22

2

5

7

9

10

12

Environment Testing America

ANALYTICAL REPORT

Eurofins Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

Laboratory Job ID: 400-219114-2

Laboratory Sample Delivery Group: CCPC, Warwick GA

Client Project/Site: Crisp County CCR RADS

For:

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Dawit Yifru

ChayandxWhitmin

Authorized for release by: 5/27/2022 4:31:38 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

Cheyenne.Whitmire@et.eurofinsus.com

LINKS

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR RADS

Laboratory Job ID: 400-219114-2 SDG: CCPC, Warwick GA

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	
Sample Summary	
Client Sample Results	6
Definitions	11
Chronicle	
QC Association	14
QC Sample Results	15
Chain of Custody	17
Receipt Checklists	19
Certification Summary	20

6

R

9

10

12

Case Narrative

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2 SDG: CCPC, Warwick GA

Job ID: 400-219114-2

Laboratory: Eurofins Pensacola

Narrative

Job Narrative 400-219114-2

Receipt

The samples were received on 4/28/2022 9:07 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 9.8° C and 11.9° C.

RAD

Method 9315: Radium 226 Batch 160-563228. Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. DUP-18 (400-219114-1), MW-D2 (400-219114-2), MW-D3 (400-219114-3), MW-D1 (400-219114-4), MW-U1 (400-219114-5), (LCS 160-563228/1-A), (MB 160-563228/24-A), (240-165647-L-3-A), (240-165647-A-3-B MSD)

Method 9320: Radium-228 prep batch 160-563242. The LCS recovered at 127%. The limits in our LIMS system at 75-125 reflect the requirements of a regulatory agency that represents a large amount of our work. However the samples associated with this LCS are not from this agency and are therefore held to our in-house statistical limits of 61-138% per method requirements. The LCS passes, no further action is required. (LCS 160-563242/1-A)

Method 9320: Radium-228 prep batch 160-0563242. Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. DUP-18 (400-219114-1), MW-D2 (400-219114-2), MW-D3 (400-219114-3), MW-D1 (400-219114-4), MW-U1 (400-219114-5), (LCS 160-563242/1-A), (MB 160-563242/24-A), (240-165647-A-3-C MS) and (240-165647-A-3-D MSD)

3

6

7

8

9

11

12

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2 SDG: CCPC, Warwick GA

Method	Method Description	Protocol	Laboratory
9315	Radium-226 (GFPC)	SW846	TAL SL
9320	Radium-228 (GFPC)	SW846	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
PrecSep_0	Preparation, Precipitate Separation	None	TAL SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	TAL SL

4

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

TAL SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

8

9

10

11

12

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2 SDG: CCPC, Warwick GA

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
400-219114-1	DUP-18	Water	04/26/22 00:01	04/28/22 09:07	
400-219114-2	MW-D2	Water	04/26/22 14:01	04/28/22 09:07	
400-219114-3	MW-D3	Water	04/26/22 15:50	04/28/22 09:07	
400-219114-4	MW-D1	Water	04/26/22 12:00	04/28/22 09:07	
400-219114-5	MW-U1	Water	04/26/22 10:30	04/28/22 09:07	

2

3

4

5

7

10

11

12

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-2 Project/Site: Crisp County CCR RADS SDG: CCPC, Warwick GA

Client Sample ID: DUP-18

Date Collected: 04/26/22 00:01 Date Received: 04/28/22 09:07

Lab Sample ID: 400-219114-1

Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0258	U	0.0958	0.0959	1.00	0.183	pCi/L	05/02/22 10:13	05/25/22 21:43	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.3		40 - 110					05/02/22 10:13	05/25/22 21:43	1

Method: 9320 - I	Radium-228 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.331	U	0.315	0.316	1.00	0.503	pCi/L	05/02/22 10:51	05/23/22 13:01	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.3		40 - 110					05/02/22 10:51	05/23/22 13:01	1
Y Carrier	83.0		40 - 110					05/02/22 10:51	05/23/22 13:01	1

_ Method: Ra226_Ra2	28 - Con	nbined Rad	dium-226 a	nd Radium	-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.357	U	0.329	0.330	5.00	0.503	pCi/L		05/26/22 22:23	1

5/27/2022

Client: Geosyntec Consultants, Inc.

Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2
SDG: CCPC, Warwick GA

Client Sample ID: MW-D2

Date Collected: 04/26/22 14:01
Date Received: 04/28/22 09:07

Lab Sample ID: 400-219114-2

Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0842	U	0.112	0.112	1.00	0.187	pCi/L	05/02/22 10:13	05/25/22 21:43	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	83.8		40 - 110					05/02/22 10:13	05/25/22 21:43	1

Method: 9320 - F	Radium-228 (GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.699		0.404	0.409	1.00	0.591	pCi/L	05/02/22 10:51	05/23/22 13:01	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	83.8		40 - 110					05/02/22 10:51	05/23/22 13:01	1
Y Carrier	82.6		40 - 110					05/02/22 10:51	05/23/22 13:01	1

Method: Ra226 Ra	228 - Con	bined Ra	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.783		0.419	0.424	5.00	0.591	pCi/L		05/26/22 22:23	1

2

5

7

0

10

11

46

Н

Client: Geosyntec Consultants, Inc.

Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2
SDG: CCPC, Warwick GA

Client Sample ID: MW-D3

Date Collected: 04/26/22 15:50 Date Received: 04/28/22 09:07 Lab Sample ID: 400-219114-3

Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.00126	U	0.0876	0.0876	1.00	0.182	pCi/L	05/02/22 10:13	05/25/22 21:43	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.3		40 - 110					05/02/22 10:13	05/25/22 21:43	1

Method: 9320 -	·	,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.375	U	0.333	0.335	1.00	0.528	pCi/L	05/02/22 10:51	05/23/22 13:02	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.3		40 - 110					05/02/22 10:51	05/23/22 13:02	1
Y Carrier	84.1		40 - 110					05/02/22 10:51	05/23/22 13:02	1

Method: Ra226_Ra2	28 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.374	U	0.344	0.346	5.00	0.528	pCi/L		05/26/22 22:23	1

5/27/2022

2

3

5

7

0

10

Client: Geosyntec Consultants, Inc.

Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2
SDG: CCPC, Warwick GA

Client Sample ID: MW-D1

Date Collected: 04/26/22 12:00 Date Received: 04/28/22 09:07 Lab Sample ID: 400-219114-4

Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0166	U	0.0865	0.0866	1.00	0.175	pCi/L	05/02/22 10:13	05/25/22 21:44	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	78.8		40 - 110					05/02/22 10:13	05/25/22 21:44	1

Method: 9320 - I	Radium-228 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.297	U	0.329	0.330	1.00	0.537	pCi/L	05/02/22 10:51	05/23/22 13:02	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	78.8		40 - 110					05/02/22 10:51	05/23/22 13:02	1
Y Carrier	84.5		40 - 110					05/02/22 10:51	05/23/22 13:02	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.314	U	0.340	0.341	5.00	0.537	pCi/L		05/26/22 22:23	1

2

3

5

7

9

10

12

13

Н

Client: Geosyntec Consultants, Inc.

Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2
SDG: CCPC, Warwick GA

Client Sample ID: MW-U1

Date Collected: 04/26/22 10:30 Date Received: 04/28/22 09:07 Lab Sample ID: 400-219114-5

Matrix: Water

Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.166	U	0.144	0.145	1.00	0.211	pCi/L	05/02/22 10:13	05/25/22 21:44	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.3		40 - 110					05/02/22 10:13	05/25/22 21:44	1

Method: 9320 - I	Radium-228 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0724	U	0.395	0.395	1.00	0.716	pCi/L	05/02/22 10:51	05/23/22 13:02	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.3		40 - 110					05/02/22 10:51	05/23/22 13:02	1
Y Carrier	84.5		40 - 110					05/02/22 10:51	05/23/22 13:02	1

Method: Ra226_Ra2	28 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.239	U	0.420	0.421	5.00	0.716	pCi/L		05/26/22 22:23	1

5/27/2022

2

-

0

10

11 12

Definitions/Glossary

Client: Geosyntec Consultants, Inc.

Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2
SDG: CCPC, Warwick GA

Qualifiers

Rad

Qualifier Qualifier Description

U Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

5

b

10

11

12

Lab Chronicle

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-2 Project/Site: Crisp County CCR RADS SDG: CCPC, Warwick GA

Client Sample ID: DUP-18

Date Collected: 04/26/22 00:01 Date Received: 04/28/22 09:07 Lab Sample ID: 400-219114-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			563228	05/02/22 10:13	MS	TAL SL
Total/NA	Analysis	9315		1	567255	05/25/22 21:43	SCB	TAL SL
Total/NA	Prep	PrecSep_0			563242	05/02/22 10:51	MS	TAL SL
Total/NA	Analysis	9320		1	566897	05/23/22 13:01	SCB	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	567530	05/26/22 22:23	EMH	TAL SL

Lab Sample ID: 400-219114-2 Client Sample ID: MW-D2 **Matrix: Water**

Date Collected: 04/26/22 14:01 Date Received: 04/28/22 09:07

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			563228	05/02/22 10:13	MS	TAL SL
Total/NA	Analysis	9315		1	567255	05/25/22 21:43	SCB	TAL SL
Total/NA	Prep	PrecSep_0			563242	05/02/22 10:51	MS	TAL SL
Total/NA	Analysis	9320		1	566897	05/23/22 13:01	SCB	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	567530	05/26/22 22:23	EMH	TAL SL

Client Sample ID: MW-D3 Lab Sample ID: 400-219114-3 Date Collected: 04/26/22 15:50

Matrix: Water Date Received: 04/28/22 09:07

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			563228	05/02/22 10:13	MS	TAL SL
Total/NA	Analysis	9315		1	567255	05/25/22 21:43	SCB	TAL SL
Total/NA	Prep	PrecSep_0			563242	05/02/22 10:51	MS	TAL SL
Total/NA	Analysis	9320		1	566897	05/23/22 13:02	SCB	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	567530	05/26/22 22:23	EMH	TAL SL

Client Sample ID: MW-D1 Lab Sample ID: 400-219114-4 Date Collected: 04/26/22 12:00

Date Received: 04/28/22 09:07

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			563228	05/02/22 10:13	MS	TAL SL
Total/NA	Analysis	9315		1	567255	05/25/22 21:44	SCB	TAL SL
Total/NA	Prep	PrecSep_0			563242	05/02/22 10:51	MS	TAL SL
Total/NA	Analysis	9320		1	566897	05/23/22 13:02	SCB	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	567530	05/26/22 22:23	EMH	TAL SL

Eurofins Pensacola

Page 12 of 20

Matrix: Water

Lab Chronicle

Client: Geosyntec Consultants, Inc. Job ID: 400-219114-2 Project/Site: Crisp County CCR RADS SDG: CCPC, Warwick GA

Client Sample ID: MW-U1 Lab Sample ID: 400-219114-5 Date Collected: 04/26/22 10:30

Matrix: Water

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA PrecSep-21 563228 05/02/22 10:13 MS TAL SL Prep Total/NA 9315 567255 05/25/22 21:44 SCB Analysis 1 TAL SL Total/NA Prep PrecSep_0 563242 05/02/22 10:51 MS TAL SL Total/NA Analysis 9320 1 566897 05/23/22 13:02 SCB TAL SL Total/NA Analysis Ra226_Ra228 567530 05/26/22 22:23 EMH TAL SL 1

Laboratory References:

Date Received: 04/28/22 09:07

TAL SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

QC Association Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2
SDG: CCPC, Warwick GA

Rad

Prep Batch: 563228

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-1	DUP-18	Total/NA	Water	PrecSep-21	
400-219114-2	MW-D2	Total/NA	Water	PrecSep-21	
400-219114-3	MW-D3	Total/NA	Water	PrecSep-21	
400-219114-4	MW-D1	Total/NA	Water	PrecSep-21	
400-219114-5	MW-U1	Total/NA	Water	PrecSep-21	
MB 160-563228/24-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-563228/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
240-165647-A-3-A MS	Matrix Spike	Total/NA	Water	PrecSep-21	
240-165647-A-3-B MSD	Matrix Spike Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 563242

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-219114-1	DUP-18	Total/NA	Water	PrecSep_0	
400-219114-2	MW-D2	Total/NA	Water	PrecSep_0	
400-219114-3	MW-D3	Total/NA	Water	PrecSep_0	
400-219114-4	MW-D1	Total/NA	Water	PrecSep_0	
400-219114-5	MW-U1	Total/NA	Water	PrecSep_0	
MB 160-563242/24-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-563242/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
240-165647-A-3-C MS	Matrix Spike	Total/NA	Water	PrecSep_0	
240-165647-A-3-D MSD	Matrix Spike Duplicate	Total/NA	Water	PrecSep 0	

3

4

O

9

10

11

12

10

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2 SDG: CCPC, Warwick GA

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-563228/24-A

Matrix: Water

Analysis Batch: 567416

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 563228

	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.05280	U	0.0612	0.0614	1.00	0.169	pCi/L	05/02/22 10:13	05/26/22 07:37	1

Total

Count

MB MB

Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac 05/02/22 10:13 05/26/22 07:37 Ba Carrier 84.5 40 - 110

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 563228

Lab Sample ID: LCS 160-563228/1-A **Matrix: Water**

Analysis Batch: 567255

Total

LCS LCS %Rec **Spike** Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 11.3 9.945 1.16 1.00 0.168 pCi/L 88 75 - 125

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 81.5 40 - 110

Lab Sample ID: 240-165647-A-3-A MS **Client Sample ID: Matrix Spike**

Matrix: Water

Analysis Batch: 567416

Prep Type: Total/NA

Prep Batch: 563228

Total MS MS

Uncert. %Rec Sample Sample Spike Analyte Result Qual Added $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Result Qual Radium-226 0.249 11.4 1.13 1.00 0.152 pCi/L 84 60 - 140 9.859

MS MS

Carrier %Yield Qualifier Limits Ba Carrier 86.0 40 - 110

Lab Sample ID: 240-165647-A-3-B MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Water Prep Type: Total/NA **Analysis Batch: 567416** Prep Batch: 563228

Total

Sample Sample Spike MSD MSD Uncert. %Rec **RER** Analyte Result Qual Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits RER Limit Radium-226 0.249 11.3 10.47 1.20 1.00 0.196 pCi/L 91 60 - 140 0.26

> MSD MSD %Yield Qualifier

Carrier Limits Ba Carrier 77.1 40 - 110

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-563242/24-A

Matrix: Water

Analysis Batch: 566898

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 563242

-			Count	Total						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.5973		0.325	0.330	1.00	0.457	pCi/L	05/02/22 10:51	05/23/22 13:06	1

Eurofins Pensacola

Page 15 of 20

-2 6A

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2 SDG: CCPC, Warwick GA

Method: 9320 - Radium-228 (GFPC) (Continued)

	MB MB				
Carrier	%Yield Qualif	ier Limits	Prepared	Analyzed	Dil Fac
Ba Carrier	84.5	40 - 110	05/02/22 10:51	05/23/22 13:06	1
Y Carrier	91.6	40 - 110	05/02/22 10:51	05/23/22 13:06	1

Lab Sample ID: LCS 160-563242/1-A

Matrix: Water

Analysis Batch: 566897

Client Sample ID: Lab Control Sample	
Pren Tyne: Total/NA	

Prep Batch: 563242

				Total					
	Spike	LCS	LCS	Uncert.					%Rec
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits
Radium-228	8.60	10.93		1.43	1.00	0.560	pCi/L	127	75 - 125

 Carrier
 %Yield Plant
 Qualifier Plant
 Limits Plant

 Ba Carrier
 81.5
 40 - 110

 Y Carrier
 84.5
 40 - 110

Lab Sample ID: 240-165647-A-3-C MS

Matrix: Water

Analysis Batch: 566897

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 563242

Total Sample Sample Spike MS MS Uncert. %Rec Analyte Result Qual Added (2σ+/-) RL**MDC** Unit Limits Result Qual %Rec Radium-228 0.552 8.64 10.40 1.37 1.00 0.510 pCi/L 60 - 140

 MS MS

 Carrier
 %Yield Ba Carrier
 Qualifier 40 - 110

 Y Carrier
 86.0
 40 - 110

Lab Sample ID: 240-165647-A-3-D MSD

Matrix: Water

Analysis Batch: 566897

Client Sample ID: Matrix Spike Duplicate

Prop Ratch: 563242

Prep Batch: 563242

						Total						
	Sample 3	Sample	Spike	MSD	MSD	Uncert.				%Rec		RER
Analyte	Result (Qual	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	RER	Limit
Radium-228	0.552		8.56	11.84		1.54	1.00	0.595 pCi/L	132	60 - 140	0.49	1

 MSD MSD

 Carrier
 %Yield Pack
 Qualifier Qualifier
 Limits

 Ba Carrier
 77.1
 40 - 110

 Y Carrier
 86.7
 40 - 110

Eurofins Pensacola

3355 McLemore Drive	
Pensacola, FL 32514	Chain of Custody Record
Phone: 850-474-1001 Fax: 850-478-2671	
	Sampler:
Client Information	Whitmire Chavenne D
Client Contact:	
	LIONE:

eurofins Environment Testing America

Client Information	Tristan Orr	4	Whitmir	Lab PM: Whitmire Chevenne R	S and			Carrier T	Carrier Tracking No(s):	COC No:	No:	
Client Contact:	1		E-Mail:					Section 2		400-	400-110409-29334.	34.1
Dawit Yird Company:	, 811 - 8Co)	4 157	Cheyen	ne.Whitm	Cheyenne.Whitmire@et.eurofinsus.com	urofinsu	s.com	otate of Origin.	Origin.	Page	Page: Page 1 of 1	
Geosyntec Consultants, Inc.		- bwsid:				A A	9			Job #:		
Address: 1255 Roberts Blvd NW Sritte 200	Due Date Requested:				-	Analysis	SIS Re	Requested		1000 C		
City:	TAT Bosons at AT			1		_			-		200	is:
Kennesaw	i Ai Kequested (days):	_		100					F.A.L.	A - HCL B - NaOH		M - Hexane N - None
State, Zip: GA, 30144	Compliance Project: A Yes	No.		Od	oM,9					C-Zr D-N		O - AsNaO2 P - Na2O4S
Phone:	2			28_GFI	S,IT,d9					Ž Ž Š	E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
osyntec.com			OF NO		r,Co,Li,	•			400-219114 COC	·		T - TSP Dodecahydrate U - Acetone
Project Name: Crisp County CCR	Project #: 40007960		SOA)	8 Or M		sbiloS				Siani	J - DI Water K - EDTA L - EDA	V - MCAA W - pH 4-5 7 - other (specific)
Site: CCPC, Warmick GA	SSOW#:		eidms:			pavlos		Hq bloi				c one (specify)
Samnle Identification	6	Sample Type (C=comp,	Matrix (w=water, S=solid. O=waste/oll,	MSMm 12	4200_CI_E - C	VOA - Mercury	4500_SO4_E -	l-gnildme2b		al Mumber of		
	Sample Date Time	G=grab)	BT=Tissue, A=Air) 캠핑 iten Code:	- 1				oi3		10.	Special Ins	Special Instructions/Note:
Dup - 18	4/26/23	T	Water				Z	2			TANK THE	
MW-DZ	4126/22 2:01		Water	- 2			2 8				١	0
MW - D3	d		T				7 8				11	
MW - DI	5	1	Water			_	-			0	十二十	.32
NW - 01	22 10			2 2	3 6	_	8 6				コニュ	51.0
			Water		-	-				구 ************************************		8.10
		1	1800	-				+		5.在10.3.3.		
		3										
										ís us d		
Describle House of Life side												
ant	Doison B Unknown] Radiological		Sample	ole Disposal (A i	I (A fee	may be	be assessed if san	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	e retained lor	ger than 1	month)
I, III, IV, Other (specify)	Level II			Special I	nstruction	ns/QC R	Special Instructions/QC Requirements:	nts:	by Lab	Archive For	ır	Months
Empty Kit Relinquished by:	Date:		Time	<u>اة</u>	l			Me	Method of Shipment:			
reinguises of.	Paterfine: HIZI I 20 A A	11:30	Company	Recei	Received by:	Xo		1	Date/Time:			Company
Veilinquisited by:	Date/Time:	Ŏ	Company O	Recei	Received by:				Date/Time:			Company
Kelinquished by:	Date/Time:	Ŏ	Company	Recei	Received by:		1	1	Date/Time:		20.02	Company
Custody Seals Intact: Custody Seal No.: △ Yes △ No				Coole	r Temperat	ure(s) °C a	Cooler Temperature(s) °C and Other Remarks:	emarks:	2000	1000	1767	
									0			- I>

En i camen, lestag 🔆 eurofins

Sarrier Tracking No(s)

Chain of Custody Record

Pensacola, FL 32514 Phone: 850-474-1001 Fax: 850-478-2671

3355 McLemore Drive

S - H2SO4 T - TSP Dodecahydrate U - Acetone Special Instructions/Note: V - MCAA W - pH 4-5 Z - other (specify) M - Hexane
N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S2O3 Months Company Sompany Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont
Special Instructions/QC Requirements: 6.80 **M** 7.32 6.00 COC No: 400-110409-29334.1 6.7 reservation Codes 9 A - HCL
B - NaOH
C - Zn Acetate
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 1 Hd Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA 11 11 00 Ho Ho Hd Hd 200 CC Date/Time: Date/Time Method of Shipment State of Origin. 5 **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: E-Mail: Cheyenne.Whitmire@et.eurofinsus.com 2540C - Total Dissolved Solids Received by.
Feed CX.
Received by. 020 - Sb,As,B,Ba,Be,Ca,Cd,Cr,Co,Li,Pb,Tl,Se,Mo Lab PM: Whitmire, Cheyenne R Received by: Ø Ø 0 9315_Ra226, 9320_Ra228, Ra226Ra228_GFPC (Sepsinger) Time: BT=Tissue, A=Air) Matrix Water Water Water Water Water Company Orneloct Radiological Type (C=comp, G=grab) Phone: 11:30 6 9 Po #: Purchase Order not required Standord Sample Time 4/26/12 12:0D 10:30 4/26/22/37SD 2:0 Date/Time: Date: Unknown (AT Requested (days): Tristan Due Date Requested: Compliance Project: 22/25/2 4/26/22 Sample Date 4126/22 Project #: 40007960 Date/Time: Poison B evel Skin Irritant せり Deliverable Requested: I, II, III, IV, Other (specify) Jendry 16 Custody Seal No. 951 CCPC, MOUNICK Non-Hazard Flammable 1255 Roberts Blvd, NW Suite 200 Possible Hazard Identification -20g-Geosyntec Consultants, Inc Empty Kit Relinquished by: Custody Seals Intact: dyifru@geosyntec.com Sample Identification Client Information Relinquished by: A Yes A No 0 Crisp County CCR elinquished by: 20 State, Zip. GA, 30144 3 Client Contact: Dawit Yifru 3 Kennesaw 3 3

Page 18 of 20

5/27/2022

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 400-219114-2 SDG Number: CCPC, Warwick GA

Login Number: 219114 List Source: Eurofins Pensacola

List Number: 1

Creator: Roberts, Alexis J

orditor Roborto, Alloxio		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	Water present in cooler; indicates evidence of melted ice.
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	9.8°C, 11.9°C IR10
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	No time on COC or sample containers for Dup-18
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

_

4

5

-

9

10

12

1:

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc. Project/Site: Crisp County CCR RADS

Job ID: 400-219114-2 SDG: CCPC, Warwick GA

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-22
California	Los Angeles County Sanitation Districts	10259	06-30-22
California	State	2886	07-01-22
Connecticut	State	PH-0241	03-31-23
Florida	NELAP	E87689	06-30-22
HI - RadChem Recognition	State	n/a	06-30-22
Illinois	NELAP	200023	11-30-22
lowa	State	373	12-01-22
Kansas	NELAP	E-10236	10-31-22
Kentucky (DW)	State	KY90125	12-31-22
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-22
Louisiana	NELAP	04080	06-30-22
Louisiana (DW)	State	LA011	12-31-22
Maryland	State	310	09-30-22
MI - RadChem Recognition	State	9005	06-30-22
Missouri	State	780	06-30-22
Nevada	State	MO000542020-1	07-31-22
New Jersey	NELAP	MO002	06-30-22
New York	NELAP	11616	04-01-23
North Dakota	State	R-207	06-30-22
NRC	NRC	24-24817-01	12-31-22
Oklahoma	NELAP	9997	08-31-22
Oregon	NELAP	4157	09-01-22
Pennsylvania	NELAP	68-00540	02-28-23
South Carolina	State	85002001	06-30-22
Texas	NELAP	T104704193	07-31-22
US Fish & Wildlife	US Federal Programs	058448	07-31-22
USDA	US Federal Programs	P330-17-00028	03-11-23
Utah	NELAP	MO000542021-14	08-01-22
Virginia	NELAP	10310	06-14-22
Washington	State	C592	08-30-22
West Virginia DEP	State	381	10-31-22

2

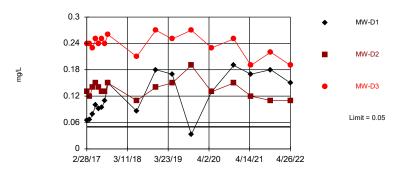
3

6

Q

9

11


12

APPENDIX D

Statistical Calculations and Time-series Graphs

Exceeds Limit: MW-D1. MW-D2. MW-D3

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 72.22% NDs. Annual per-constituent alpha = 0.0304. Individual comparison alpha = 0.005131 (1 of 2). Comparing 3 points to limit. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Boron Analysis Run 6/27/2022 4:03 PM View: Sanitas_Statistics Sampling Events 1 through

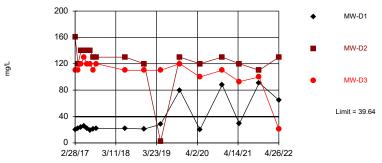
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

Within Limit Prediction Limit Interwell Non-parametric

MW-D1

MW-D2


MW-D3

Limit = 9.833

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Annual per-constituent alpha = 0.03331. Individual comparison alpha = 0.00563 (1 of 2). Comparing 3 points to limit. Insufficient data to test for seasonality; data will not be deseasonalized.

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

Background Data Summary: Mean=34.82, Std. Dev.=2.481, n=17. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9604, critical = 0.851. Kappa = 1.942 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Constituent: Calcium Analysis Run 6/27/2022 4:03 PM View: Sanitas_Statistics Sampling Events 1 throug

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

Within Limits

Prediction Limit
Interwell Parametric

MW-D1

MW-D2

MW-D3

Limit = 9.179

Limit = 5.686

Background Data Summary: Mean=7.432, Std. Dev.=0.9078, n=18. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8664, critical = 0.858. Kappa = 1.924 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001253. Comparing 3 points to limit.

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG Hollow symbols indicate censored values.

0.08

0.04

Exceeds Limit: MW-D3

Prediction Limit
Interwell Parametric

0.2
0.16
0.12

Background Data Summary (based on square root transformation): Mean=0.2513, Std. Dev.=0.03522, n=18, 11.11% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8756, critical = 0.858. Kappa = 1.924 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

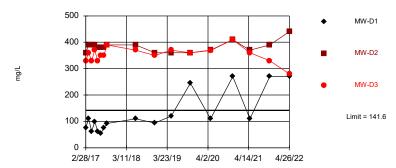
4/2/20 4/14/21 4/26/22

MW-D1

MW-D2

MW-D3

Limit = 0.1018

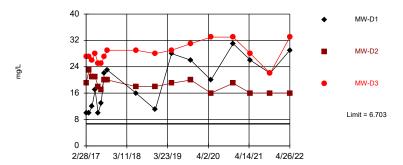

Constituent: Fluoride Analysis Run 6/27/2022 4:05 PM View: Sanitas_Statistics Sampling Events 1 throug

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

Exceeds Limit: MW-D1, MW-D2, MW-D3 Prediction Limit
Interwell Parametric

2/28/17 3/11/18 3/23/19


Background Data Summary: Mean=97.53, Std. Dev.=22.69, n=17. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9453, critical = 0.851. Kappa = 1.942 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Constituent: Total Dissolved Solids Analysis Run 6/27/2022 4:07 PM View: Sanitas_Statistics Sampling E

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

Exceeds Limit: MW-D1, MW-D2, MW-D3 Prediction Limit
Interwell Parametric

Background Data Summary (based on square root transformation): Mean=1.733, Std. Dev.=0.4408, n=17, 11.76% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8669, critical = 0.851. Kappa = 1.942 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Constituent: Sulfate Analysis Run 6/27/2022 4:07 PM View: Sanitas_Statistics Sampling Events 1 through

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Prediction Limit

	CCPC Plant Cris	sp Ash Pond Site	Client: Geosynto	ec Data: Sa	nitas_Statistics	Samplii	ng Even	ts 1 through	10 Printed 6/27/2	022, 4:08 PI	М
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-D1	0.05	n/a	4/26/2022	0.15	Yes	18	72.22	n/a	0.005131	NP Inter (NDs) 1 of 2
Boron (mg/L)	MW-D2	0.05	n/a	4/26/2022	0.11	Yes	18	72.22	n/a	0.005131	NP Inter (NDs) 1 of 2
Boron (mg/L)	MW-D3	0.05	n/a	4/26/2022	0.19	Yes	18	72.22	n/a	0.005131	NP Inter (NDs) 1 of 2
Calcium (mg/L)	MW-D1	39.64	n/a	4/26/2022	65	Yes	17	0	No	0.002505	Param Inter 1 of 2
Calcium (mg/L)	MW-D2	39.64	n/a	4/26/2022	130	Yes	17	0	No	0.002505	Param Inter 1 of 2
Calcium (mg/L)	MW-D3	39.64	n/a	4/26/2022	21	No	17	0	No	0.002505	Param Inter 1 of 2
Chloride (mg/L)	MW-D1	9.833	n/a	4/26/2022	2.9	No	17	0	n/a	0.00563	NP Inter (normality)
Chloride (mg/L)	MW-D2	9.833	n/a	4/26/2022	3.8	No	17	0	n/a	0.00563	NP Inter (normality)
Chloride (mg/L)	MW-D3	9.833	n/a	4/26/2022	4.1	No	17	0	n/a	0.00563	NP Inter (normality)
Field pH (SU)	MW-D1	9.179	5.686	4/26/2022	6.73	No	18	0	No	0.001253	Param Inter 1 of 2
Field pH (SU)	MW-D2	9.179	5.686	4/26/2022	6.86	No	18	0	No	0.001253	Param Inter 1 of 2
Field pH (SU)	MW-D3	9.179	5.686	4/26/2022	7.32	No	18	0	No	0.001253	Param Inter 1 of 2
Fluoride (mg/L)	MW-D1	0.1018	n/a	4/26/2022	0.08J	No	18	11.11	sqrt(x)	0.002505	Param Inter 1 of 2
Fluoride (mg/L)	MW-D2	0.1018	n/a	4/26/2022	0.1ND	No	18	11.11	sqrt(x)	0.002505	Param Inter 1 of 2
Fluoride (mg/L)	MW-D3	0.1018	n/a	4/26/2022	0.14	Yes	18	11.11	sqrt(x)	0.002505	Param Inter 1 of 2
Sulfate (mg/L)	MW-D1	6.703	n/a	4/26/2022	29	Yes	17	11.76	sqrt(x)	0.002505	Param Inter 1 of 2
Sulfate (mg/L)	MW-D2	6.703	n/a	4/26/2022	16	Yes	17	11.76	sqrt(x)	0.002505	Param Inter 1 of 2
Sulfate (mg/L)	MW-D3	6.703	n/a	4/26/2022	33	Yes	17	11.76	sqrt(x)	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-D1	141.6	n/a	4/26/2022	270	Yes	17	0	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-D2	141.6	n/a	4/26/2022	440	Yes	17	0	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-D3	141.6	n/a	4/26/2022	280	Yes	17	0	No	0.002505	Param Inter 1 of 2

Constituent: Antimony (mg/L) Analysis Run 6/27/2022 4:17 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0025 (^*)	<0.0025 (F1)	<0.0025 (^*)	<0.0025 (^*)
3/27/2017	<0.0025	<0.0025	<0.0025	<0.0025
4/24/2017	<0.0025	<0.0025	<0.0025	<0.0025
5/22/2017	<0.0025	<0.0025	<0.0025	<0.0025
6/19/2017	<0.0025	<0.0025	<0.0025	<0.0025
7/17/2017	<0.0025	<0.0025	<0.0025	<0.0025
8/14/2017	<0.0025	<0.0025	<0.0025	<0.0025
9/13/2017	<0.0025	<0.0025	<0.0025	<0.0025
3/22/2018	<0.0025	<0.0025	<0.0025	<0.0025
4/29/2019	<0.0025	<0.0025	<0.0025	<0.0025
4/27/2020	<0.0005 (^)	<0.0005 (^)	<0.0005	<0.0005 (^)
4/26/2021	<0.0025	<0.0025	<0.0025	<0.0025
4/26/2022	<0.0025	<0.0025	<0.0025	< 0.0025

Constituent: Antimony Analysis Run 6/27/2022 4:12 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 52 ND/Trace = 52 Wells = 4 Minimum Value = 0.0005 Maximum Value = 0.0025 Mean Value = 0.002346 Median Value = 0.0025 Standard Deviation = 0.0005381 Coefficient of Variation = 0.2294 Skewness = -3.175

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	13	13	0.0005	0.0025	0.002346	0.0025	0.0005547	0.2364	-3.175
MW-D2	13	13	0.0005	0.0025	0.002346	0.0025	0.0005547	0.2364	-3.175
MW-D3	13	13	0.0005	0.0025	0.002346	0.0025	0.0005547	0.2364	-3.175
MW-U1 (bg)	13	13	0.0005	0.0025	0.002346	0.0025	0.0005547	0.2364	-3.175

Constituent: Arsenic (mg/L) Analysis Run 6/27/2022 4:16 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0013	<0.0013	0.0015	<0.0013
3/27/2017	<0.0013	<0.0013	<0.0013	<0.0013
4/24/2017	<0.0013	0.00083 (J)	0.00052 (J)	<0.0013
5/22/2017	<0.0013	0.00048 (J)	0.00092 (J)	<0.0013
6/19/2017	<0.0013	<0.0013	0.00097 (J)	<0.0013
7/17/2017	<0.0013	0.00095 (J)	0.0016	0.00046 (J)
8/14/2017	<0.0013	<0.0013	0.00048 (J)	<0.0013
9/13/2017	<0.0013	<0.0013	0.00079 (J)	<0.0013
3/22/2018	<0.0013	<0.0013	0.0006 (J)	<0.0013
6/5/2018	<0.0013	<0.0013	0.00067 (J)	<0.0013
11/29/2018	<0.0013	<0.0013	<0.0013	<0.0013
4/29/2019	<0.0013	<0.0013	0.00048 (J)	<0.0013
10/23/2019	<0.0013	<0.0013	0.00076 (J)	<0.0013
4/27/2020	<0.00025 (^)	0.00027 (B)	0.001 (B)	0.00015 (JB)
11/19/2020	<0.0013	<0.0013	0.0011 (J)	<0.0013
4/26/2021	<0.0013	<0.0013	0.001 (J)	<0.0013
10/26/2021	<0.0013	<0.0013	<0.0013	0.0013
4/26/2022	<0.0013	<0.0013	<0.0013	0.0019

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UC

Summary Report

Constituent: Arsenic Analysis Run 6/27/2022 4:16 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 72 ND/Trace = 66 Wells = 4 Minimum Value = 0.00015 Maximum Value = 0.0019 Mean Value = 0.001148 Median Value = 0.0013 Standard Deviation = 0.0003337 Coefficient of Variation = 0.2906 Skewness = -1.365

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	18	18	0.00025	0.0013	0.001242	0.0013	0.0002475	0.1993	-3.881
MW-D2	18	14	0.00027	0.0013	0.001152	0.0013	0.0003144	0.273	-1.916
MW-D3	18	4	0.00048	0.0016	0.0009772	0.000985	0.0003531	0.3613	0.1096
MW-U1 (bg)	18	14	0.00015	0.0019	0.001223	0.0013	0.0003663	0.2995	-1.676

Constituent: Barium (mg/L) Analysis Run 6/27/2022 4:19 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	0.011	0.087	0.22	0.0034
3/27/2017	0.0099	0.11	0.23	0.0026
4/24/2017	0.011	0.15	0.2	0.0022 (J)
5/22/2017	0.013	0.12	0.21	0.002 (J)
6/19/2017	0.012	0.11	0.21	0.0021 (J)
7/17/2017	0.012	0.16	0.2	0.0025
8/14/2017	0.014	0.13	0.18	0.002 (J)
9/13/2017	0.014	0.14	0.18	0.0023 (J)
3/22/2018	0.0095	0.15	0.16	0.0021 (J)
6/5/2018	0.01	0.19	0.15	0.0025
11/29/2018	0.0099	0.15	0.14	0.0018 (J)
4/29/2019	0.015	0.16	0.1	0.0018 (J)
10/23/2019	0.027	0.14	0.13	0.0022 (J)
4/27/2020	0.015	0.15	0.091	0.0022
11/19/2020	0.024	0.14	0.084	0.0062
4/26/2021	0.017	0.14	0.061	0.0021 (J)
10/26/2021	0.022 (B)	0.17	0.074 (B)	0.0024 (JB)
4/26/2022	0.015	0.14	0.072	0.0031

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

Summary Report

Constituent: Barium Analysis Run 6/27/2022 4:19 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 72 ND/Trace = 11 Wells = 4 Minimum Value = 0.0018 Maximum Value = 0.23 Mean Value = 0.07689 Median Value = 0.044 Standard Deviation = 0.07549 Coefficient of Variation = 0.9819 Skewness = 0.4357

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
MW-D1	18	0	0.0095	0.027	0.01452	0.0135	0.00507	0.3493	1.251
MW-D2	18	0	0.087	0.19	0.1409	0.14	0.02388	0.1694	-0.2995
MW-D3	18	0	0.061	0.23	0.1496	0.155	0.0574	0.3838	-0.1852
MW-U1 (bg)	18	0	0.0018	0.0062	0.002528	0.0022	0.001004	0.3972	2.928

Constituent: Beryllium (mg/L) Analysis Run 6/27/2022 4:20 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.002	<0.002	<0.002	<0.002
3/27/2017	<0.002	<0.002	<0.002	<0.002
4/24/2017	<0.002	<0.002	<0.002	<0.002
5/22/2017	<0.002	<0.002	<0.002	<0.002
6/19/2017	<0.002	<0.002	<0.002	<0.002
7/17/2017	<0.002	<0.002	<0.002	<0.002
8/14/2017	<0.002	<0.002	<0.002	<0.002
9/13/2017	<0.002	<0.002	<0.002	<0.002
3/22/2018	<0.0025	<0.0025	<0.0025	<0.0025
4/29/2019	<0.002	<0.002	<0.002	<0.002
4/27/2020	<0.0004	<0.0004 (^)	<0.0004 (^)	<0.0004 (^)
4/26/2021	<0.002	<0.002	<0.002	<0.002
4/26/2022	<0.002	<0.002	<0.002	<0.002

Constituent: Beryllium Analysis Run 6/27/2022 4:20 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 52 ND/Trace = 52 Wells = 4 Minimum Value = 0.0004 Maximum Value = 0.0025 Mean Value = 0.001915 Median Value = 0.002 Standard Deviation = 0.0004616 Coefficient of Variation = 0.241 Skewness = -2.635

<u>Well</u>	<u>#Obs.</u>	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	13	13	0.0004	0.0025	0.001915	0.002	0.0004758	0.2484	-2.635
MW-D2	13	13	0.0004	0.0025	0.001915	0.002	0.0004758	0.2484	-2.635
MW-D3	13	13	0.0004	0.0025	0.001915	0.002	0.0004758	0.2484	-2.635
MW-U1 (bg)	13	13	0.0004	0.0025	0.001915	0.002	0.0004758	0.2484	-2.635

Constituent: Cadmium (mg/L) Analysis Run 6/27/2022 4:22 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.001	<0.001	<0.001	<0.001
3/27/2017	<0.001	<0.001	<0.001	<0.001
4/24/2017	<0.001	<0.001	<0.001	<0.001
5/22/2017	<0.001	<0.001	<0.001	<0.001
6/19/2017	<0.001	<0.001	<0.001	<0.001
7/17/2017	<0.001	<0.001	<0.001	<0.001
8/14/2017	<0.001	<0.001	<0.001	<0.001
9/13/2017	<0.001	<0.001	<0.001	<0.001
3/22/2018	<0.0025	<0.0025	<0.0025	<0.0025
4/29/2019	<0.001	<0.001	<0.001	<0.001
4/27/2020	<0.0002	7.5E-05 (J^)	7.1E-05 (J)	<0.0002
11/19/2020	<0.001	<0.001	<0.001	<0.001
4/26/2021	<0.001	<0.001	<0.001	<0.001
4/26/2022	<0.001	<0.001	<0.001	<0.001

Constituent: Cadmium Analysis Run 6/27/2022 4:22 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 56 ND/Trace = 56 Wells = 4 Minimum Value = 0.000071 Maximum Value = 0.0025 Mean Value = 0.001045 Median Value = 0.001 Standard Deviation = 0.0004648 Coefficient of Variation = 0.4446 Skewness = 1.691

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
MW-D1	14	14	0.0002	0.0025	0.00105	0.001	0.0004686	0.4463	1.887
MW-D2	14	13	0.000075	0.0025	0.001041	0.001	0.0004869	0.4677	1.523
MW-D3	14	13	0.000071	0.0025	0.001041	0.001	0.0004875	0.4684	1.512
MW-U1 (ba)	14	14	0.0002	0.0025	0.00105	0.001	0.0004686	0.4463	1.887

Constituent: Chromium (mg/L) Analysis Run 6/27/2022 4:23 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	0.0034	0.0038	0.0029	0.0051
3/27/2017	<0.0025	<0.0025	<0.0025	0.0017 (J)
4/24/2017	<0.0025	<0.0025	<0.0025	0.0014 (J)
5/22/2017	<0.0025	<0.0025	<0.0025	0.0014 (J)
6/19/2017	<0.0025	<0.0025	<0.0025	0.0014 (J)
7/17/2017	<0.0025	<0.0025	<0.0025	0.0014 (J)
8/14/2017	<0.0025	<0.0025	<0.0025	0.0012 (J)
9/13/2017	<0.0025	<0.0025	<0.0025	0.0014 (J)
3/22/2018	<0.0025	<0.0025	<0.0025	0.0016 (J)
11/29/2018	<0.0025	<0.0025	<0.0025	0.0012 (J)
4/29/2019	<0.0025	<0.0025	<0.0025	0.0011 (J)
4/27/2020	<0.0005 (^)	<0.0005 (^)	<0.0005 (^)	0.0013
11/19/2020	<0.0025 (^)	<0.0025 (^)	<0.0025 (^)	0.0015 (J)
4/26/2021	<0.0025	<0.0025	<0.0025	0.0011 (J)
10/26/2021	<0.0025	0.0012 (J)	<0.0025	0.0016 (J)
4/26/2022	0.0015 (J)	<0.0025	<0.0025	0.0026

Constituent: Chromium Analysis Run 6/27/2022 4:22 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 64 ND/Trace = 58 Wells = 4 Minimum Value = 0.0005 Maximum Value = 0.0021 Mean Value = 0.002208 Median Value = 0.0025 Standard Deviation = 0.0007633 Coefficient of Variation = 0.3457 Skewness = 0.2125

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	16	14	0.0005	0.0034	0.002369	0.0025	0.0006074	0.2564	-1.86
MW-D2	16	14	0.0005	0.0038	0.002375	0.0025	0.0006894	0.2903	-1.112
MW-D3	16	15	0.0005	0.0029	0.0024	0.0025	0.0005164	0.2152	-3.36
MW-U1 (bg)	16	0	0.0011	0.0051	0.001688	0.0014	0.0009749	0.5777	2.948

Constituent: Cobalt (mg/L) Analysis Run 6/27/2022 4:26 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0025	0.00047 (J)	0.0011 (J)	<0.0025
3/27/2017	<0.0025	<0.0025	0.00079 (J)	<0.0025
4/24/2017	<0.0025	<0.0025	0.001 (J)	<0.0025
5/22/2017	<0.0025	<0.0025	0.0012 (J)	<0.0025
6/19/2017	<0.0025	<0.0025	0.0015 (J)	<0.0025
7/17/2017	<0.0025	<0.0025	0.0014 (J)	<0.0025
8/14/2017	<0.0025	<0.0025	0.0013 (J)	<0.0025
9/13/2017	<0.0025	<0.0025	0.0014 (J)	<0.0025
3/22/2018	<0.0025	<0.0025	0.0015 (J)	<0.0005
6/5/2018	<0.0025	<0.0025	0.0017 (J)	<0.0025
11/29/2018	<0.0025	<0.0025	0.00098 (J)	<0.0025
4/29/2019	<0.0025	<0.0025	0.0013 (J)	<0.0025
10/23/2019	<0.0025	<0.0025	0.0012 (J)	<0.0025
4/27/2020	<0.0005 (^)	0.001	0.00035 (J)	<0.0005 (^)
11/19/2020	<0.0025	<0.0025	0.00059 (J)	<0.0025
4/26/2021	<0.0025	<0.0025	<0.0025	<0.0025
4/26/2022	<0.0025	<0.0025	<0.0025	<0.0025

Summary Report

Constituent: Cobalt Analysis Run 6/27/2022 4:23 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 68 ND/Trace = 67 Wells = 4 Minimum Value = 0.00035 Maximum Value = 0.0025 Mean Value = 0.002063 Median Value = 0.0025 Standard Deviation = 0.0007167 Coefficient of Variation = 0.3474 Skewness = -1.205

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	17	17	0.0005	0.0025	0.002382	0.0025	0.0004851	0.2036	-3.75
MW-D2	17	15	0.00047	0.0025	0.002292	0.0025	0.0005936	0.259	-2.487
MW-D3	17	2	0.00035	0.0025	0.001312	0.0013	0.0005622	0.4284	0.7009
MW-U1 (bg)	17	17	0.0005	0.0025	0.002265	0.0025	0.0006642	0.2933	-2.373

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 6/27/2022 4:27 PM View: Sanitas_Statistics Sampling Events 1 through 18

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	0.421	0.506	0.522	0.117
3/27/2017	0.655	1.28	0.557	0
4/24/2017	0.212	0.756	0.572	0.19
5/22/2017	0.186	0.333	0.457	0.133
6/19/2017	0.156	0.388	0.78	0.135
7/17/2017	0.153	0.534	0.409	0.19
8/14/2017	0.287	0.452	0.339	0.302
9/13/2017	0.816	0.453	1.28	0.614
3/22/2018	0.643	0.716	1.17	0.131
6/5/2018	0.149	0.0139	0.564	0
11/29/2018	0.0994	0.18	0.0501	0.0234
4/29/2019	<0.457	<0.42	0.594	<0.386
10/23/2019	<0.439	<0.484	<0.465	<0.508
4/27/2020	0.401	<0.184	<0.326	<0.298
11/19/2020	0.833	<5	<5	0.615
4/26/2021	<5	0.773	<5	0.609
10/26/2021	0.749	0.812	0.666	0.801
4/26/2022	<5	0.783	<5	<5

Summary Report

Constituent: Combined Radium 226 + 228 Analysis Run 6/27/2022 4:27 PM View: Sanitas_Statistics Sampling Events 1 through 18

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 72 ND/Trace = 17 Wells = 4 Minimum Value = 0 Maximum Value = 5 Mean Value = 0.8962 Median Value = 0.461 Standard Deviation = 1.385 Coefficient of Variation = 1.545 Skewness = 2.521

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
MW-D1	18	4	0.0994	5	0.9254	0.43	1.502	1.623	2.356
MW-D2	18	4	0.0139	5	0.7815	0.495	1.092	1.398	3.435
MW-D3	18	5	0.0501	5	1.32	0.568	1.717	1.301	1.686
MW-U1 (bg)	18	4	0	5	0.5585	0.244	1.134	2.031	3.593

Constituent: Fluoride (mg/L) Analysis Run 6/27/2022 4:29 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	0.06 (J)	0.06 (J)	0.13	0.06 (J)
3/27/2017	0.05 (J)	0.05 (J)	0.11	0.04 (J)
4/24/2017	0.07 (J)	0.07 (J)	0.12	0.06 (J)
5/22/2017	0.07 (J)	0.06 (J)	0.11	0.06 (J)
6/19/2017	0.08 (J)	0.06 (J)	0.12	0.06 (J)
7/17/2017	0.11	0.06 (J)	0.06 (J)	0.06 (J)
8/14/2017	0.07 (J)	0.06 (J)	0.12	0.05 (J)
9/13/2017	0.075 (J)	0.061 (J)	0.12	0.058 (J)
3/22/2018	0.08 (J)	0.06 (J)	0.11	0.07 (J)
6/5/2018	0.07 (J)	0.07 (J)	0.12	0.06 (J)
11/29/2018	0.04 (J)	0.04 (J)	0.1	0.04 (J)
4/29/2019	0.06 (J)	0.06 (J)	0.11	<0.1
10/23/2019	0.12 (B)	0.05 (JB)	0.1 (B)	0.05 (JB)
4/27/2020	0.04 (J)	0.05 (J)	0.1	0.05 (J)
11/19/2020	0.1	0.05 (J)	0.11	0.07 (J)
4/26/2021	0.09 (JB)	0.12 (B)	0.19 (B)	0.1 (B)
10/26/2021	0.09 (J)	0.07 (J)	0.2 (F1)	<0.1
4/26/2022	0.08 (J)	<0.1	0.14	0.07 (J)

Summary Report

Constituent: Fluoride Analysis Run 6/27/2022 4:28 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 72 ND/Trace = 50 Wells = 4 Minimum Value = 0.04 Maximum Value = 0.2 Mean Value = 0.08103 Median Value = 0.07 Standard Deviation = 0.03272 Coefficient of Variation = 0.4038 Skewness = 1.276

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	18	0	0.04	0.12	0.07528	0.0725	0.02173	0.2886	0.2446
MW-D2	18	1	0.04	0.12	0.06394	0.06	0.01882	0.2943	1.804
MW-D3	18	0	0.06	0.2	0.1206	0.115	0.03171	0.263	1.121
MW-U1 (bg)	18	2	0.04	0.1	0.06433	0.06	0.01858	0.2887	0.928

Constituent: Lead (mg/L) Analysis Run 6/27/2022 4:30 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0013 (^)	0.0005 (J)	<0.0013 (^)	<0.0013
3/27/2017	<0.0013	<0.0013	<0.0013	<0.0013
4/24/2017	<0.0013	<0.0013	<0.0013	<0.0013
5/22/2017	<0.0013	<0.0013	<0.0013	0.00065 (J)
6/19/2017	<0.0013	<0.0013	<0.0013	<0.0013
7/17/2017	<0.0013	<0.0013	<0.0013	<0.0013
8/14/2017	0.0008 (J)	0.00037 (J)	<0.0013	<0.0013
9/13/2017	<0.0013	<0.0013	<0.0013	<0.0013
3/22/2018	<0.0013	<0.0013	<0.0013	<0.0013
4/29/2019	<0.0013	<0.0013	<0.0013	<0.0013
4/27/2020	<0.00025 (^)	<0.00025 (^)	<0.00025 (^)	<0.00025 (^)
4/26/2021	<0.0013	<0.0013	<0.0013	<0.0013
4/26/2022	<0.0013	<0.0013	<0.0013	<0.0013

Summary Report

Constituent: Lead Analysis Run 6/27/2022 4:29 PM View: Sanitas_Statistics Sampling Events 1 through 18
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 52 ND/Trace = 52 Wells = 4 Minimum Value = 0.00025 Maximum Value = 0.0013 Mean Value = 0.001164 Median Value = 0.0013 Standard Deviation = 0.0003321 Coefficient of Variation = 0.2853 Skewness = -2.119

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	13	12	0.00025	0.0013	0.001181	0.0013	0.0003119	0.2642	-2.409
MW-D2	13	11	0.00025	0.0013	0.001086	0.0013	0.0004096	0.3771	-1.333
MW-D3	13	13	0.00025	0.0013	0.001219	0.0013	0.0002912	0.2389	-3.175
MW-U1 (bg)	13	12	0.00025	0.0013	0.001169	0.0013	0.0003295	0.2818	-2.163

Constituent: Lithium (mg/L) Analysis Run 6/27/2022 4:31 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0025	<0.0025	<0.0025	<0.0025
3/27/2017	<0.0025	<0.0025	<0.0025	<0.0025
4/24/2017	<0.0025	<0.0025	<0.0025	<0.0025
5/22/2017	<0.0025	<0.0025	<0.0025	<0.0025
6/19/2017	<0.0025	<0.0025	<0.0025	<0.0025
7/17/2017	<0.0025	<0.0025	<0.0025	<0.0025
8/14/2017	<0.0025	<0.0025	<0.0025	<0.0025
9/13/2017	<0.0025	<0.0025	<0.0025	<0.0025
3/22/2018	<0.005	<0.005	<0.005	0.00034 (J)
11/29/2018	<0.0025	<0.0025	<0.0025	<0.0025
4/29/2019	<0.0025	0.0011 (J)	0.0013 (J)	<0.0025
4/27/2020	<0.0005 (^)	<0.0005	0.00048 (J)	<0.0005 (^)
11/19/2020	0.0023 (J)	0.0031	0.0024 (J)	<0.0025
4/26/2021	<0.0025	<0.0025	<0.0025	<0.0025
4/26/2022	<0.0025	<0.0025	<0.0025	<0.0025

Summary Report

Constituent: Lithium Analysis Run 6/27/2022 4:31 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 60 ND/Trace = 59 Wells = 4 Minimum Value = 0.00034 Maximum Value = 0.005 Mean Value = 0.002417 Median Value = 0.0025 Standard Deviation = 0.0008526 Coefficient of Variation = 0.3528 Skewness = 0.3034

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	15	14	0.0005	0.005	0.00252	0.0025	0.0008571	0.3401	0.822
MW-D2	15	13	0.0005	0.005	0.00248	0.0025	0.0009473	0.382	0.5088
MW-D3	15	12	0.00048	0.005	0.002445	0.0025	0.0009156	0.3744	0.7303
MW-U1 (bg)	15	14	0.00034	0.0025	0.002223	0.0025	0.0007325	0.3296	-2.165

Constituent: Mercury (mg/L) Analysis Run 6/27/2022 4:32 PM View: Sanitas_Statistics Sampling Events 1 through 18

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	7.7E-05 (JB)	0.00018 (JB)	0.00011 (JB)	9.9E-05 (JB)
3/27/2017	<0.0002	0.00011 (J)	<0.0002	<0.0002
4/24/2017	<0.0002	<0.0002	<0.0002	<0.0002
5/22/2017	<0.0002	<0.0002	<0.0002	<0.0002
6/19/2017	<0.0002	<0.0002	<0.0002	<0.0002
7/17/2017	<0.0002	<0.0002	<0.0002	<0.0002
8/14/2017	<0.0002	<0.0002	<0.0002	<0.0002
9/13/2017	<0.0002	<0.0002	<0.0002	<0.0002
3/22/2018	<0.0002	<0.0002	<0.0002	<0.0002
4/29/2019	<0.0002	<0.0002	<0.0002	<0.0002
4/27/2020	<0.0002	<0.0002	<0.0002	<0.0002
4/26/2021	<0.0002	<0.0002	<0.0002	<0.0002
4/26/2022	<0.0002	<0.0002	<0.0002	<0.0002

Summary Report

Constituent: Mercury Analysis Run 6/27/2022 4:32 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 52 ND/Trace = 52 Wells = 4 Minimum Value = 0.000077 Maximum Value = 0.0002 Mean Value = 0.0001918 Median Value = 0.0002 Standard Deviation = 0.00002747 Coefficient of Variation = 0.1432 Skewness = -3.237

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
MW-D1	13	12	0.000077	0.0002	0.0001905	0.0002	0.00003411	0.179	-3.175
MW-D2	13	11	0.00011	0.0002	0.0001915	0.0002	0.00002512	0.1311	-2.94
MW-D3	13	12	0.00011	0.0002	0.0001931	0.0002	0.00002496	0.1293	-3.175
MW-U1 (bg)	13	12	0.000099	0.0002	0.0001922	0.0002	0.00002801	0.1457	-3.175

Constituent: Molybdenum (mg/L) Analysis Run 6/27/2022 4:33 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.01	0.0012 (J)	0.0088 (J)	<0.01
3/27/2017	<0.01	<0.01	0.0023 (J)	<0.01
4/24/2017	<0.01	<0.01	0.0018 (J)	<0.01
5/22/2017	<0.01	0.0025 (J)	0.0031 (J)	<0.01
6/19/2017	<0.01	0.0016 (J)	0.0043 (J)	<0.01
7/17/2017	<0.01	<0.01	0.0027 (J)	<0.01
8/14/2017	<0.01	<0.01	0.0017 (J)	<0.01
9/13/2017	<0.01	<0.01	0.0021 (J)	<0.01
3/22/2018	<0.015	<0.015	0.0022 (J)	<0.003
6/5/2018	<0.01	<0.01	0.0022 (J)	<0.01
11/29/2018	<0.01	<0.01	<0.01	<0.01
4/29/2019	<0.01	<0.01	<0.01	<0.01
4/27/2020	<0.002 (^)	<0.002 (^)	0.0019 (J)	<0.002 (^)
11/19/2020	<0.01 (^)	<0.01	<0.01	<0.01
4/26/2021	<0.01	<0.01	<0.01	<0.01
4/26/2022	<0.01	<0.01	0.003 (J)	<0.01

Constituent: Molybdenum Analysis Run 6/27/2022 4:33 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 64 ND/Trace = 64 Wells = 4 Minimum Value = 0.0012 Maximum Value = 0.015 Mean Value = 0.007975 Median Value = 0.01 Standard Deviation = 0.003698 Coefficient of Variation = 0.4638 Skewness = -0.746

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
MW-D1	16	16	0.002	0.015	0.009812	0.01	0.002428	0.2475	-1.622
MW-D2	16	13	0.0012	0.015	0.008269	0.01	0.004044	0.4891	-0.7559
MW-D3	16	4	0.0017	0.01	0.004756	0.00285	0.00355	0.7463	0.7381
MW-U1 (bg)	16	16	0.002	0.01	0.009062	0.01	0.002568	0.2834	-2.291

Constituent: Selenium (mg/L) Analysis Run 6/27/2022 4:34 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0013	<0.0013	0.0028	<0.0013
3/27/2017	<0.0013	<0.0013	<0.0013	<0.0013
4/24/2017	<0.0013	<0.0013	<0.0013	<0.0013
5/22/2017	<0.0013	0.001 (J)	0.00037 (J)	0.00076 (J)
6/19/2017	<0.0013	0.00059 (JB)	0.001 (JB)	0.00062 (JB)
7/17/2017	0.00033 (J)	0.00033 (J)	<0.0013	0.0007 (J)
8/14/2017	<0.0013	<0.0013	<0.0013	0.00058 (J)
9/13/2017	<0.0013	<0.0013	<0.0013	0.00041 (J)
3/22/2018	<0.0013	<0.0013	<0.00025	0.00039
11/29/2018	<0.0013	<0.0013	<0.0013	<0.0013
4/29/2019	<0.0013	<0.0013	<0.0013	<0.0013
4/27/2020	<0.00025	<0.00025	0.00021 (J)	0.00061
11/19/2020	<0.0013	<0.0013	<0.0013	<0.0013
4/26/2021	<0.0013	<0.0013	<0.0013	<0.0013
4/26/2022	<0.0013	<0.0013	<0.0013	< 0.0013

Constituent: Selenium Analysis Run 6/27/2022 4:34 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 60 ND/Trace = 57 Wells = 4 Minimum Value = 0.00021 Maximum Value = 0.0028 Mean Value = 0.001101 Median Value = 0.0013 Standard Deviation = 0.000442 Coefficient of Variation = 0.4015 Skewness = 0.01535

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
MW-D1	15	14	0.00025	0.0013	0.001165	0.0013	0.0003557	0.3052	-2.165
MW-D2	15	12	0.00025	0.0013	0.001098	0.0013	0.0003804	0.3464	-1.484
MW-D3	15	11	0.00021	0.0028	0.001175	0.0013	0.0006131	0.5216	0.6699
MW-U1 (bg)	15	8	0.00039	0.0013	0.0009647	0.0013	0.0003819	0.3959	-0.3031

Constituent: Thallium (mg/L) Analysis Run 6/27/2022 4:35 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

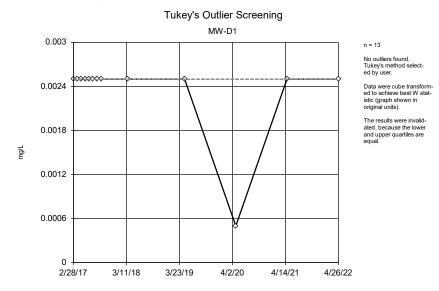
	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0005	0.00011 (J)	0.00013 (J)	<0.0005
3/27/2017	<0.0005	<0.0005	0.00011 (J)	<0.0005
4/24/2017	<0.0005	<0.0005	9.5E-05 (J)	<0.0005
5/22/2017	<0.0005	0.00011 (J)	0.00011 (J)	<0.0005
6/19/2017	<0.0005	0.00011 (J)	0.00012 (J)	<0.0005
7/17/2017	<0.0005	0.00011 (J)	0.00012 (J)	<0.0005
8/14/2017	<0.0005	0.00013 (J)	0.00011 (J)	<0.0005
9/13/2017	<0.0005	0.00012 (J)	0.00013 (J)	<0.0005
3/22/2018	<0.0005	<0.0005	0.0001 (J)	<0.0005
6/5/2018	<0.0005	8.5E-05 (J)	0.00012 (J)	<0.0005
11/29/2018	<0.0005	8.5E-05 (J)	0.0001 (J)	<0.0005
4/29/2019	<0.0005	<0.0005	0.00011 (J)	<0.0005
10/23/2019	<0.0005	0.00026 (J)	0.00017 (J)	<0.0005
4/27/2020	<0.0001 (^)	0.00013	0.00012	<0.0001 (^)
11/19/2020	<0.0005	<0.0005	<0.0005	<0.0005
4/26/2021	<0.0005	<0.0005	<0.0005	<0.0005
4/26/2022	<0.0005	<0.0005	<0.0005	<0.0005

Summary Report

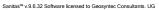
Constituent: Thallium Analysis Run 6/27/2022 4:35 PM View: Sanitas_Statistics Sampling Events 1 through 18 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

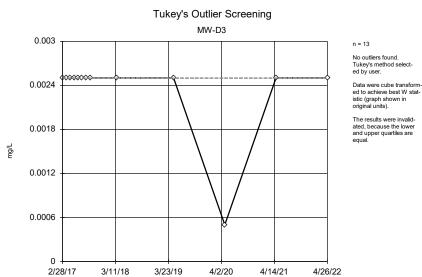
For observations made between 2/28/2017 and 4/26/2022, a summary of the selected data set:

Observations = 68
ND/Trace = 66
Wells = 4
Minimum Value = 0.000085
Maximum Value = 0.0005
Mean Value = 0.0005
Standard Deviation = 0.0001876
Coefficient of Variation = 0.5295
Skewness = -0.5141

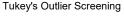

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
MW-D1	17	17	0.0001	0.0005	0.0004765	0.0005	0.00009701	0.2036	-3.75
MW-D2	17	7	0.000085	0.0005	0.0002794	0.00013	0.0001939	0.6939	0.2675
MW-D3	17	3	0.000095	0.0005	0.000185	0.00012	0.0001512	0.8174	1.652
MW-U1 (bg)	17	17	0.0001	0.0005	0.0004765	0.0005	0.00009701	0.2036	-3.75

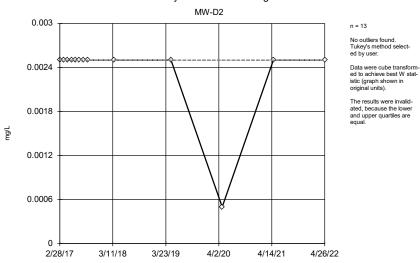
Outlier Analysis

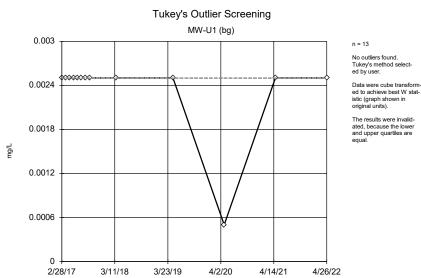

CCPC Plant Crisp Ash Pond Site C		Client: Geosyntec	Data: Sanitas_Statistics Sampling Events 1 through 10		Printed 6/27/2022, 4:39 PM					
Constituent	<u>Well</u>	Outlier	Value(s)	Date(s)	Method	<u>Alpha</u> <u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Antimony (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 12	0.002333	0.0005774	unknown	ShapiroWilk
Antimony (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 12	0.002333	0.0005774	unknown	ShapiroWilk
Antimony (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 12	0.002333	0.0005774	unknown	ShapiroWilk
Antimony (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 12	0.002333	0.0005774	unknown	ShapiroWilk
Arsenic (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 17	0.001238	0.0002547	unknown	ShapiroWilk
Arsenic (mg/L)	MW-D2	Yes	0.00027	4/27/2020	NP (nrm)	NaN 17	0.001143	0.0003218	unknown	ShapiroWilk
Arsenic (mg/L)	MW-D3	No	n/a	n/a	NP	NaN 17	0.000	0.0003544	sqrt(x)	ShapiroWilk
Arsenic (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 17	0.001183	0.000335	unknown	ShapiroWilk
Barium (mg/L)	MW-D1	No	n/a	n/a	NP	NaN 17	0.01449	0.005225	In(x)	ShapiroWilk
Barium (mg/L)	MW-D2	No	n/a	n/a	NP	NaN 17	0.141	0.02461	x^2	ShapiroWilk
Barium (mg/L)	MW-D3	No	n/a	n/a	NP	NaN 17	0.1541	0.0557	x^2	ShapiroWilk
Barium (mg/L)	MW-U1 (bg)	Yes	0.0062	11/19/2020	NP	NaN 17	0.002494	0.001024	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001908	0.0004963	unknown	ShapiroWilk
Beryllium (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001908	0.0004963	unknown	ShapiroWilk
Beryllium (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001908	0.0004963	unknown	ShapiroWilk
Beryllium (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001908	0.0004963	unknown	ShapiroWilk
Cadmium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 13	0.001054	0.0004875	unknown	ShapiroWilk
Cadmium (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 13	0.001044	0.0005066	unknown	ShapiroWilk
Cadmium (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 13	0.001044	0.0005073	unknown	ShapiroWilk
Cadmium (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 13	0.001054	0.0004875	unknown	ShapiroWilk
Chromium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 15	0.002427	0.0005812	unknown	ShapiroWilk
Chromium (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 15	0.002367	0.0007128	unknown	ShapiroWilk
Chromium (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 15	0.002393	0.0005338	unknown	ShapiroWilk
Chromium (mg/L)	MW-U1 (bg)	Yes	0.0051	2/28/2017	NP	NaN 15	0.001627	0.0009772	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 16	0.002375	0.0005	unknown	ShapiroWilk
Cobalt (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 16	0.002279	0.0006106	unknown	ShapiroWilk
Cobalt (mg/L)	MW-D3	No	n/a	n/a	NP	NaN 16	0.001238	0.000487	sqrt(x)	ShapiroWilk
Cobalt (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 16	0.00225	0.0006831	unknown	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-D1	No	n/a	n/a	NP	NaN 17	0.6857	1.139	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-D2	Yes	5	11/19/2020	NP	NaN 17	0.7815	1.126	x^(1/3)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-D3	No	n/a	n/a	NP (nrm)	NaN 17	1.103	1.495	unknown	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-U1 (bg)	No	n/a	n/a	NP	NaN 17	0.2972	0.2491	sqrt(x)	ShapiroWilk
Fluoride (mg/L)	MW-D1	No	n/a	n/a	NP	NaN 17	0.075	0.02236	sqrt(x)	ShapiroWilk
Fluoride (mg/L)	MW-D2	No	n/a	n/a	NP (nrm)	NaN 17	0.06182	0.01704	unknown	ShapiroWilk
Fluoride (mg/L)	MW-D3	Yes	0.06,0.19.	7/17/2017	NP	NaN 17	0.1194	0.0323	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-U1 (bg)	No	n/a	n/a	NP (nrm)	NaN 17	0.064	0.01909	unknown	ShapiroWilk
Lead (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001171	0.0003237	unknown	ShapiroWilk
Lead (mg/L)	MW-D2	No	n/a	n/a	NP (nrm)	NaN 12	0.001068	0.0004225	unknown	ShapiroWilk
Lead (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001213	0.0003031	unknown	ShapiroWilk
Lead (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001158	0.0003417	unknown	ShapiroWilk
Lithium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 14	0.002521	0.0008894	unknown	ShapiroWilk
Lithium (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 14	0.002479	0.0009831	unknown	ShapiroWilk
Lithium (mg/L)	MW-D3	Yes	0.005,0.0.	3/22/2018	NP (nrm)	NaN 14	0.002441	0.00095	unknown	ShapiroWilk
Lithium (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 14	0.002203	0.000756	unknown	ShapiroWilk
Mercury (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 12	0.000	0.0000	unknown	ShapiroWilk
Mercury (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 12	0.000	0.0000261	unknown	ShapiroWilk
Mercury (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 12	0.000	0.0000	unknown	ShapiroWilk
Mercury (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 12	0.000	0.0000	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 15	0.0098	0.002513	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-D2	No	n/a	n/a	NP (nrm)	NaN 15	0.008153	0.004158	unknown	ShapiroWilk


Outlier Analysis

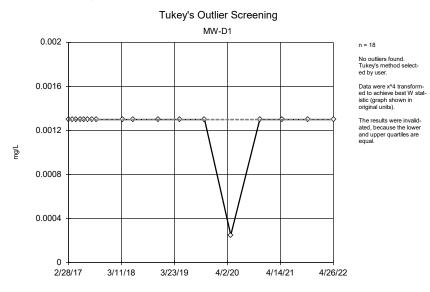
	CCPC Plant Crisp Ash Pond Site		ond Site C	Jilent: Geosyntec	c Data: Sanitas_Statistics Sampling Events 1 through 10			Printed 6/27/2022, 4:39 PM			
Constituent	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Molybdenum (mg/L)	MW-D3	No	n/a	n/a	NP (nrm)	NaN	15	0.004873	0.003642	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	15	0.009	0.002646	unknown	ShapiroWilk
Selenium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN	14	0.001156	0.0003671	unknown	ShapiroWilk
Selenium (mg/L)	MW-D2	No	n/a	n/a	NP (nrm)	NaN	14	0.001084	0.0003904	unknown	ShapiroWilk
Selenium (mg/L)	MW-D3	No	n/a	n/a	NP (nrm)	NaN	14	0.001166	0.0006352	unknown	ShapiroWilk
Selenium (mg/L)	MW-U1 (bg)	No	n/a	n/a	NP (nrm)	NaN	14	0.000	0.0003845	unknown	ShapiroWilk
Thallium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN	16	0.000475	0.0001	unknown	ShapiroWilk
Thallium (mg/L)	MW-D2	No	n/a	n/a	NP (nrm)	NaN	16	0.000	0.0001914	unknown	ShapiroWilk
Thallium (mg/L)	MW-D3	Yes	0.0005,0	11/19/202	NP	NaN	16	0.000	0.0001318	ln(x)	ShapiroWilk
Thallium (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	16	0.000475	0.0001	unknown	ShapiroWilk


Constituent: Antimony Analysis Run 6/27/2022 4:41 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

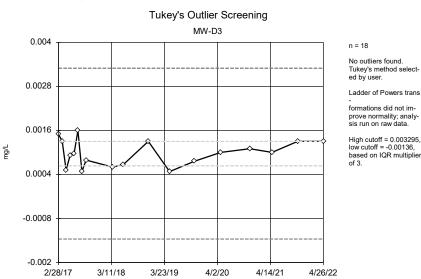



Constituent: Antimony Analysis Run 6/27/2022 4:43 PM View: Sanitas_Statistics Sampling Events 1 throu

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

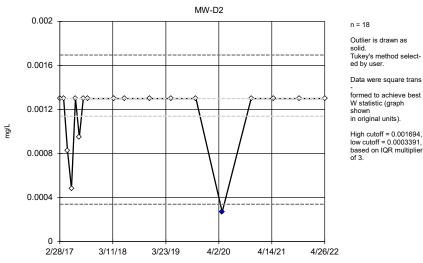


Constituent: Antimony Analysis Run 6/27/2022 4:42 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

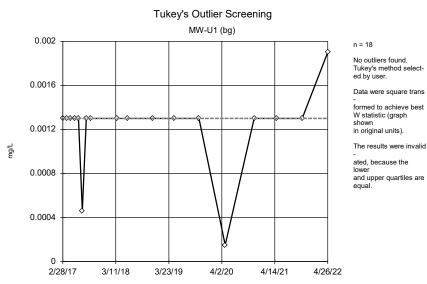


Constituent: Antimony Analysis Run 6/27/2022 4:43 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

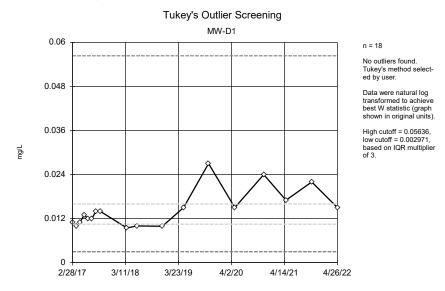
Constituent: Arsenic Analysis Run 6/27/2022 4:49 PM View: Sanitas_Statistics Sampling Events 1 through


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

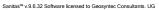
Constituent: Arsenic Analysis Run 6/27/2022 4:49 PM View: Sanitas_Statistics Sampling Events 1 through

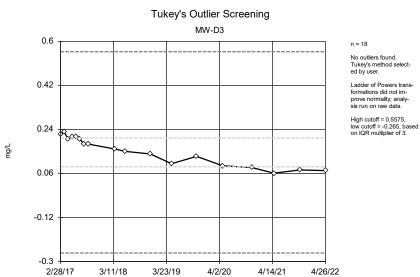

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Tukey's Outlier Screening


Constituent: Arsenic Analysis Run 6/27/2022 4:49 PM View: Sanitas_Statistics Sampling Events 1 through

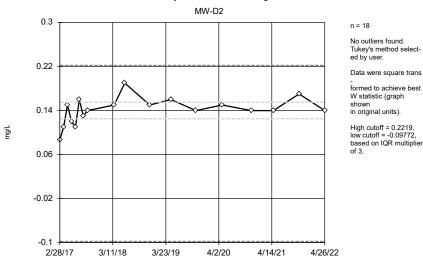
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Arsenic Analysis Run 6/27/2022 4:50 PM View: Sanitas_Statistics Sampling Events 1 through

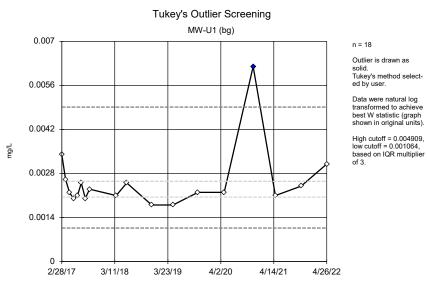

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Barium Analysis Run 6/27/2022 4:51 PM View: Sanitas_Statistics Sampling Events 1 through

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



Constituent: Barium Analysis Run 6/27/2022 4:52 PM View: Sanitas_Statistics Sampling Events 1 through


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Tukey's Outlier Screening

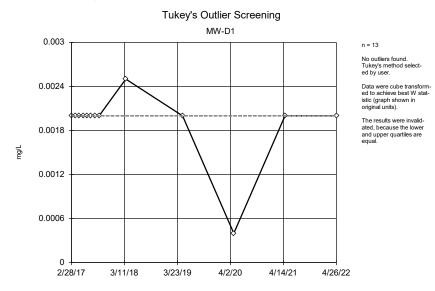
Constituent: Barium Analysis Run 6/27/2022 4:52 PM View: Sanitas_Statistics Sampling Events 1 through

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

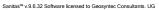
Constituent: Barium Analysis Run 6/27/2022 4:52 PM View: Sanitas_Statistics Sampling Events 1 through

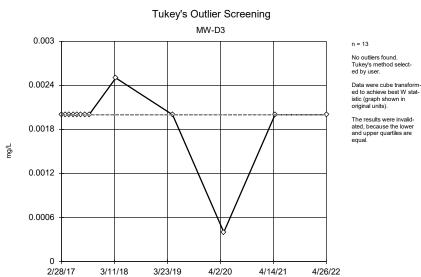
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas Statistics Sampling Events 1 through 10

0.003

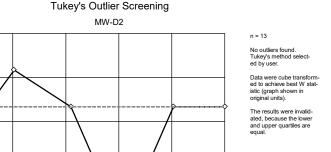

0.0024

0.0018


0.0012


0.0006

mg/L


Constituent: Beryllium Analysis Run 6/27/2022 4:54 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Beryllium Analysis Run 6/27/2022 4:54 PM View: Sanitas_Statistics Sampling Events 1 throu

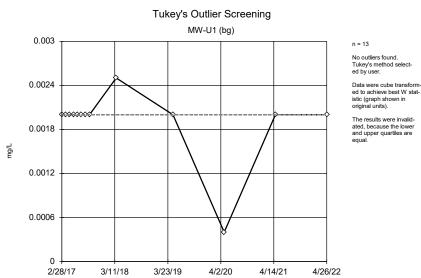
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

4/14/21

4/26/22

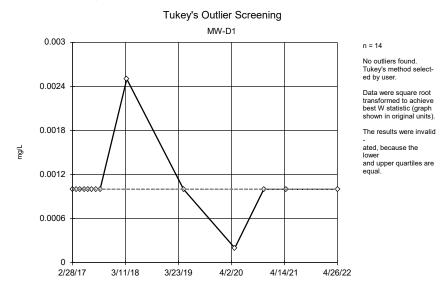
Constituent: Beryllium Analysis Run 6/27/2022 4:54 PM View: Sanitas_Statistics Sampling Events 1 throu

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

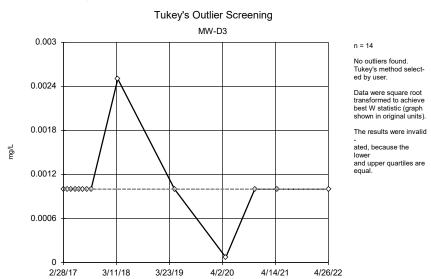

4/2/20

3/23/19

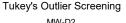
Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

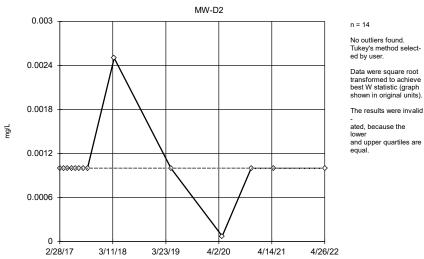

2/28/17

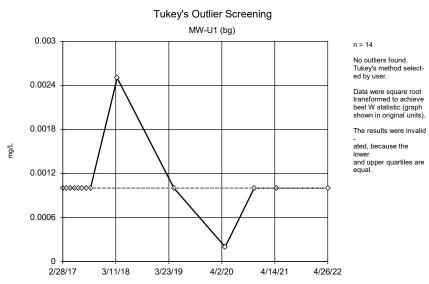
3/11/18


Constituent: Beryllium Analysis Run 6/27/2022 4:54 PM View: Sanitas_Statistics Sampling Events 1 throu

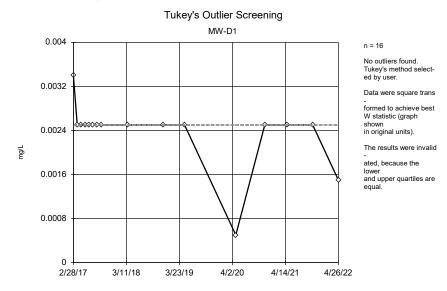
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



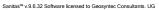

Constituent: Cadmium Analysis Run 6/27/2022 4:55 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

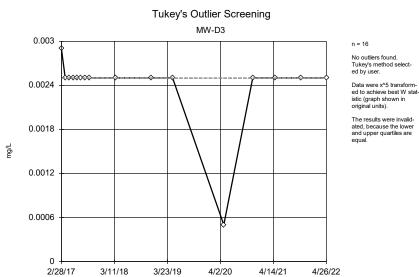


Constituent: Cadmium Analysis Run 6/27/2022 4:55 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

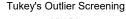


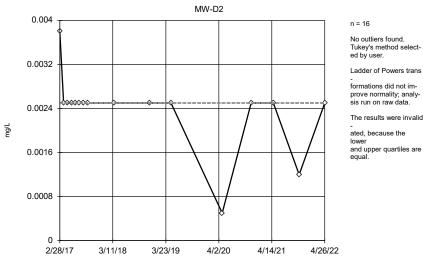
Constituent: Cadmium Analysis Run 6/27/2022 4:55 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Cadmium Analysis Run 6/27/2022 4:55 PM View: Sanitas_Statistics Sampling Events 1 throu

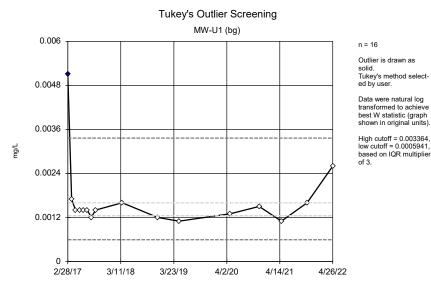

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

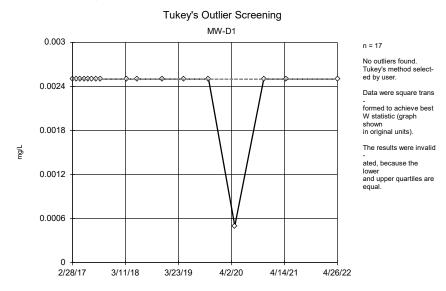
Constituent: Chromium Analysis Run 6/27/2022 4:56 PM View: Sanitas_Statistics Sampling Events 1 thro


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

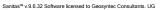


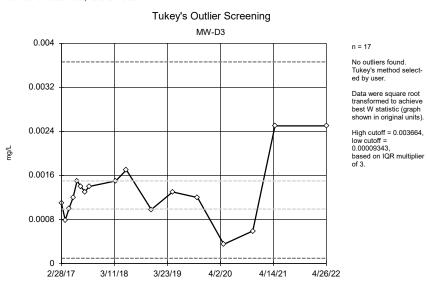
Constituent: Chromium Analysis Run 6/27/2022 4:56 PM View: Sanitas_Statistics Sampling Events 1 thro


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Chromium Analysis Run 6/27/2022 4:56 PM View: Sanitas_Statistics Sampling Events 1 thro

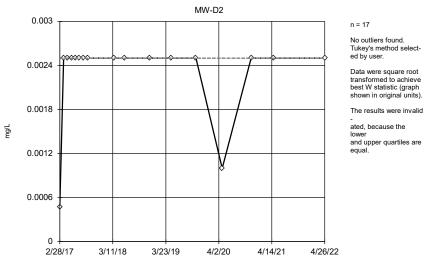
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Chromium Analysis Run 6/27/2022 4:56 PM View: Sanitas_Statistics Sampling Events 1 thro

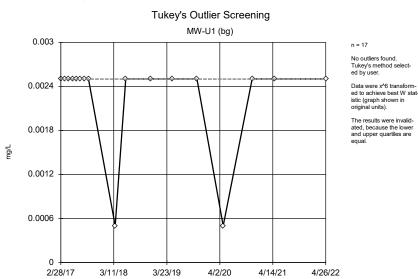

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Cobalt Analysis Run 6/27/2022 4:58 PM View: Sanitas_Statistics Sampling Events 1 through

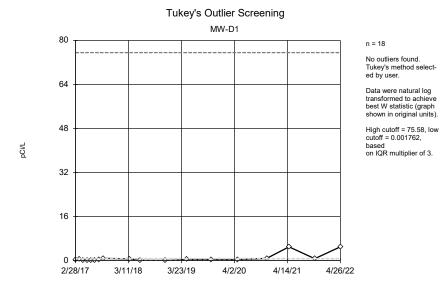
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



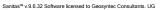
Constituent: Cobalt Analysis Run 6/27/2022 4:59 PM View: Sanitas_Statistics Sampling Events 1 through

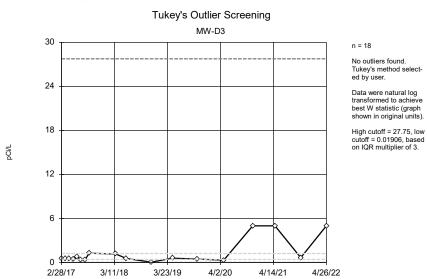

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Tukey's Outlier Screening


Constituent: Cobalt Analysis Run 6/27/2022 4:59 PM View: Sanitas_Statistics Sampling Events 1 through

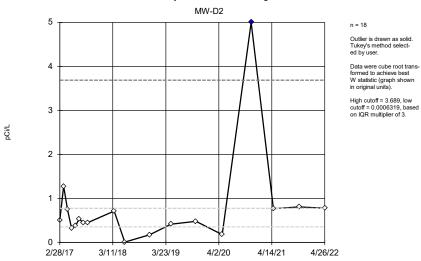
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Cobalt Analysis Run 6/27/2022 4:59 PM View: Sanitas_Statistics Sampling Events 1 through

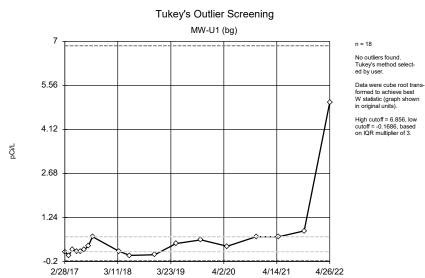

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Combined Radium 226 + 228 Analysis Run 6/27/2022 5:03 PM View: Sanitas_Statistics Sam

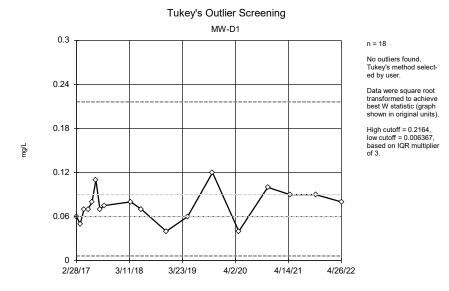
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



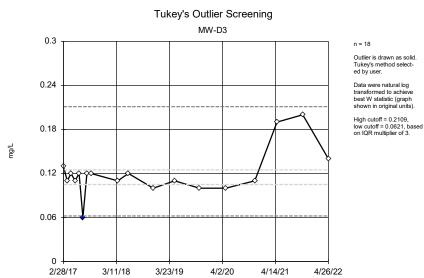
Constituent: Combined Radium 226 + 228 Analysis Run 6/27/2022 5:04 PM View: Sanitas_Statistics Sam


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Tukey's Outlier Screening

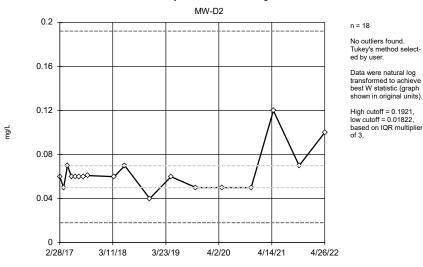

Constituent: Combined Radium 226 + 228 Analysis Run 6/27/2022 5:03 PM View: Sanitas_Statistics Sam

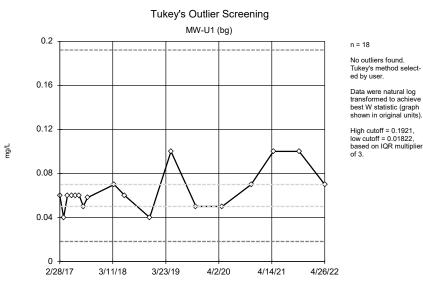
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Combined Radium 226 + 228 Analysis Run 6/27/2022 5:04 PM View: Sanitas_Statistics Sam

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

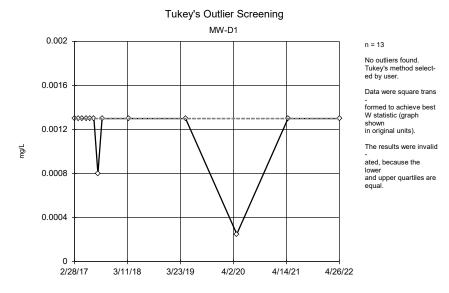
Constituent: Fluoride Analysis Run 6/27/2022 5:05 PM View: Sanitas_Statistics Sampling Events 1 throug


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

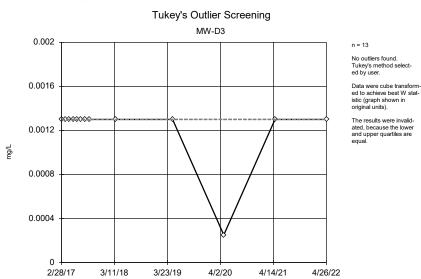

Constituent: Fluoride Analysis Run 6/27/2022 5:06 PM View: Sanitas_Statistics Sampling Events 1 throug

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Tukey's Outlier Screening

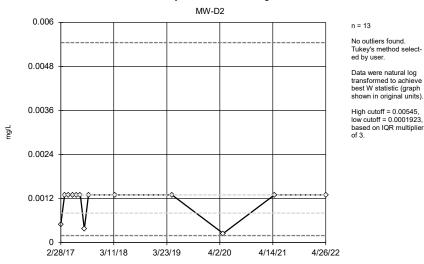


Constituent: Fluoride Analysis Run 6/27/2022 5:06 PM View: Sanitas_Statistics Sampling Events 1 throug CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

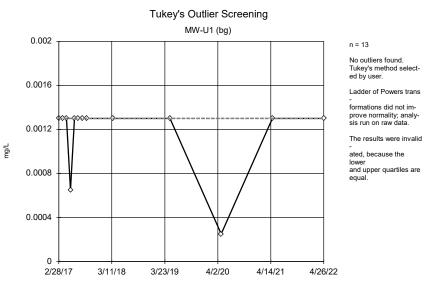

Constituent: Fluoride Analysis Run 6/27/2022 5:06 PM View: Sanitas_Statistics Sampling Events 1 throug

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

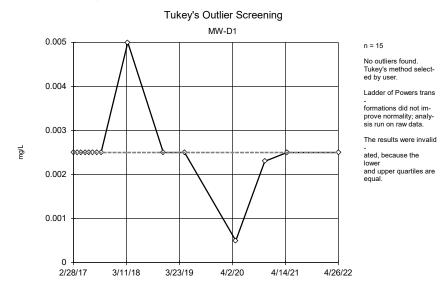
Constituent: Lead Analysis Run 6/27/2022 5:07 PM View: Sanitas_Statistics Sampling Events 1 through 1


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

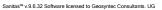
Constituent: Lead Analysis Run 6/27/2022 5:07 PM View: Sanitas_Statistics Sampling Events 1 through 1

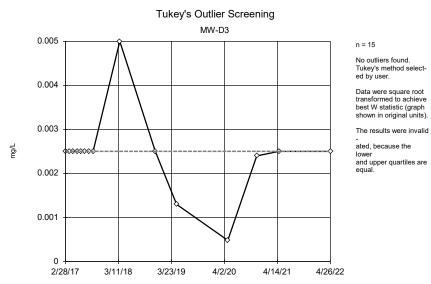

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Tukey's Outlier Screening

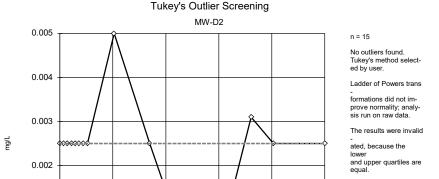

Constituent: Lead Analysis Run 6/27/2022 5:07 PM View: Sanitas_Statistics Sampling Events 1 through 1

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Lead Analysis Run 6/27/2022 5:07 PM View: Sanitas_Statistics Sampling Events 1 through 1


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Lithium Analysis Run 6/27/2022 5:07 PM View: Sanitas_Statistics Sampling Events 1 through


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Lithium Analysis Run 6/27/2022 5:08 PM View: Sanitas_Statistics Sampling Events 1 through

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

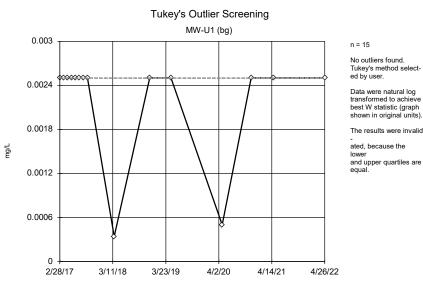
Constituent: Lithium Analysis Run 6/27/2022 5:08 PM View: Sanitas_Statistics Sampling Events 1 through

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

4/2/20

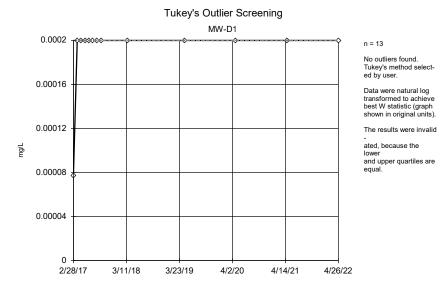
4/14/21

4/26/22

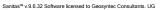

3/23/19

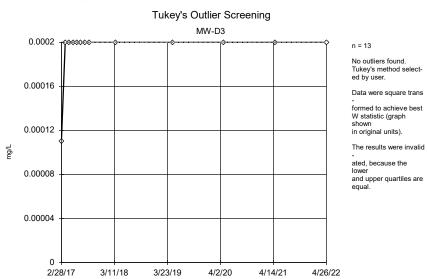
Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

2/28/17


3/11/18

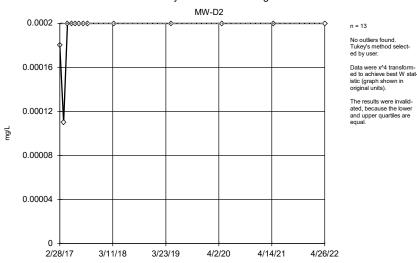
0.001

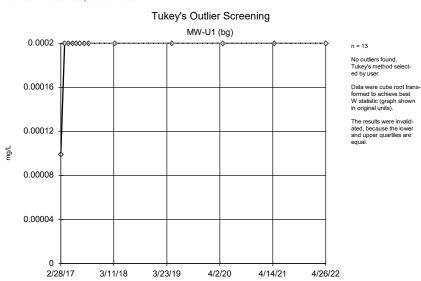

Constituent: Lithium Analysis Run 6/27/2022 5:08 PM View: Sanitas_Statistics Sampling Events 1 through


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Mercury Analysis Run 6/27/2022 5:09 PM View: Sanitas_Statistics Sampling Events 1 throug

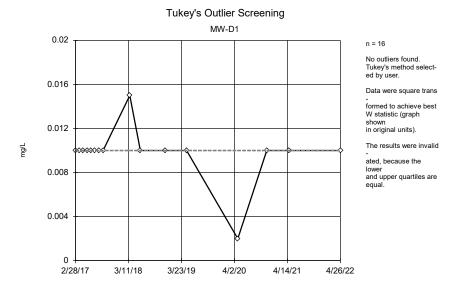
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10




Constituent: Mercury Analysis Run 6/27/2022 5:09 PM View: Sanitas_Statistics Sampling Events 1 throug

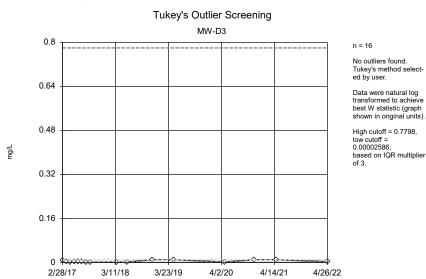
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Tukey's Outlier Screening



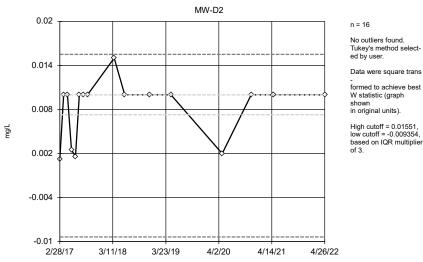
Constituent: Mercury Analysis Run 6/27/2022 5:09 PM View: Sanitas_Statistics Sampling Events 1 throug CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

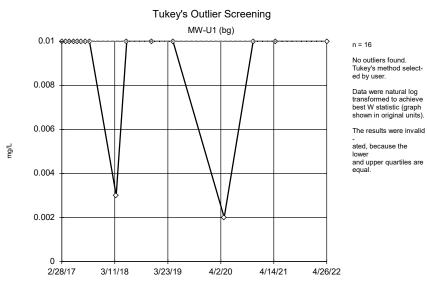
Constituent: Mercury Analysis Run 6/27/2022 5:09 PM View: Sanitas_Statistics Sampling Events 1 throug


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Molybdenum Analysis Run 6/27/2022 5:10 PM View: Sanitas_Statistics Sampling Events 1 th

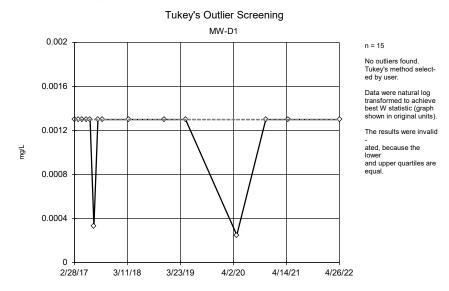
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



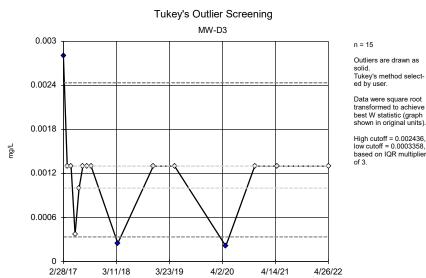

Constituent: Molybdenum Analysis Run 6/27/2022 5:10 PM View: Sanitas_Statistics Sampling Events 1 th

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Tukey's Outlier Screening

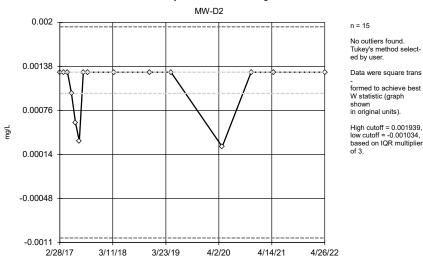


Constituent: Molybdenum Analysis Run 6/27/2022 5:10 PM View: Sanitas_Statistics Sampling Events 1 th CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

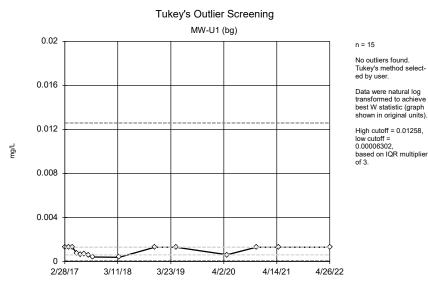


Constituent: Molybdenum Analysis Run 6/27/2022 5:10 PM View: Sanitas_Statistics Sampling Events 1 th

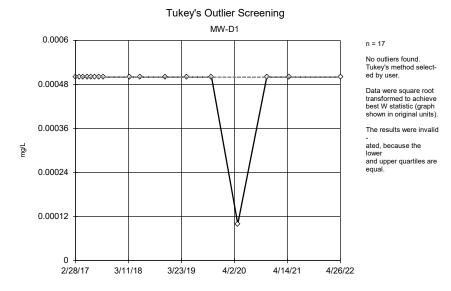
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas Statistics Sampling Events 1 through 10


Constituent: Selenium Analysis Run 6/27/2022 5:12 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Selenium Analysis Run 6/27/2022 5:12 PM View: Sanitas_Statistics Sampling Events 1 throu

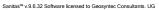

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

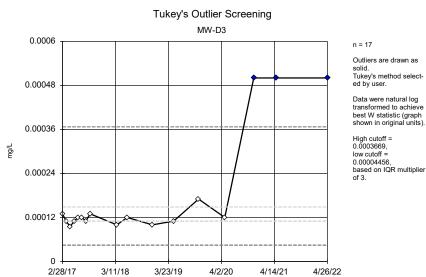
Tukey's Outlier Screening



Constituent: Selenium Analysis Run 6/27/2022 5:12 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

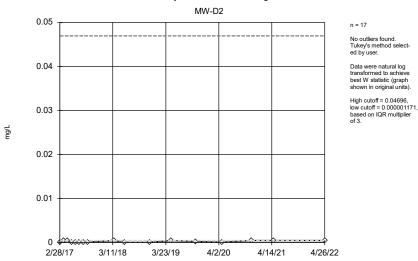
Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG




Constituent: Selenium Analysis Run 6/27/2022 5:12 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

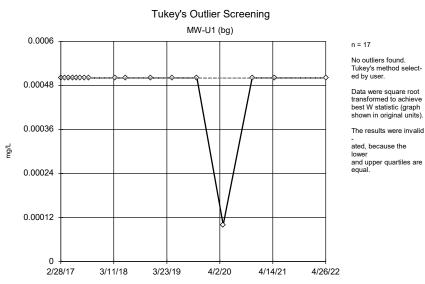
Constituent: Thallium Analysis Run 6/27/2022 5:13 PM View: Sanitas_Statistics Sampling Events 1 throug

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



Constituent: Thallium Analysis Run 6/27/2022 5:13 PM View: Sanitas_Statistics Sampling Events 1 throug

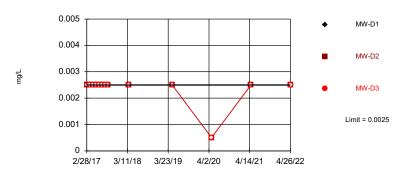
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Tukey's Outlier Screening

Constituent: Thallium Analysis Run 6/27/2022 5:13 PM View: Sanitas_Statistics Sampling Events 1 throug

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG



Constituent: Thallium Analysis Run 6/27/2022 5:13 PM View: Sanitas_Statistics Sampling Events 1 throug

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

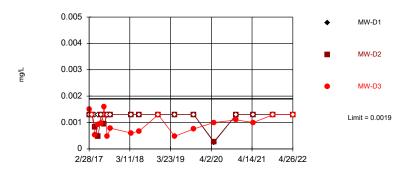
Within Limit

Tolerance Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Most recent observation is compared with limit. All background values were censored; limit is most recent reporting limit. 7.0.12% coverage at alpha=0.01; 79.49% coverage at alpha=0.05; 94.73% coverage at alpha=0.5. Report alpha = 0.5133.

Constituent: Antimony Analysis Run 6/27/2022 5:16 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

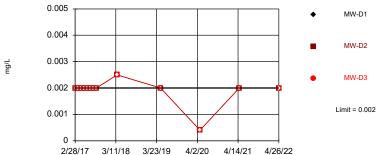

Tolerance Limit Exceeds Limit: MW-D1, MW-D2, MW-D3 Interwell Non-parametric 0.3 MW-D1 0.24 MW-D2 0.18 MW-D3 0.12 Limit = 0.0062 0.06 2/28/17 3/11/18 3/23/19 4/2/20 4/14/21 4/26/22

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Most recent observation is compared with limit. Limit is highest of 18 background values. 77.54% coverage at alpha=0.01; 84.57% coverage at alpha=0.05; 96.29% coverage at alpha=0.5. Report alpha=0.3972.

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG Hollow symbols indicate censored values.

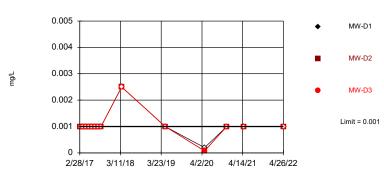
Within Limit

Tolerance Limit
Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Most recent observation is compared with limit. Limit is highest of 18 background values. 77.78% NDs. 77.54% coverage at alpha=0.01; 84.57% coverage

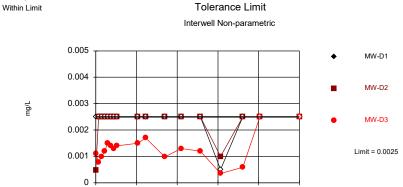
Constituent: Arsenic Analysis Run 6/27/2022 5:18 PM View: Sanitas_Statistics Sampling Events 1 through

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


 $\label{eq:Sanitas} \textbf{Sanitas} \, {}^{\text{\tiny{M}}} \, v.9.6.32 \, \, \textbf{Software licensed to Geosyntec Consultants. \, \textbf{UG}} \\ \textbf{Hollow symbols indicate censored values.}$

Within Limit Tolerance Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Most recent observation is compared with limit. All background values were censored; limit is most recent reporting limit. 70.12% coverage at alpha=0.01; 79.49% coverage at alpha=0.5. Report alpha = 0.5133.


Within Limit Tolerance Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Most recent observation is compared with limit. All background values were censored; limit is most recent reporting limit. 72.07% coverage at alpha=0.01; 80.66% coverage at alpha=0.05; 95.12% coverage at alpha=0.5. Report alpha = 0.4877.

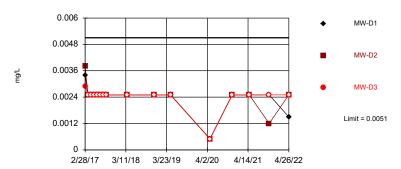
Constituent: Cadmium Analysis Run 6/27/2022 5:20 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG Hollow symbols indicate censored values.

2/28/17 3/11/18 3/23/19

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Most recent observation is compared with limit. All background values were censored; limit is most recent reporting limit. 76.37% coverage at alpha=0.01; 83.79% coverage at alpha=0.05. Report alpha = 0.4181.

4/2/20

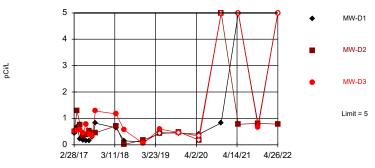

4/14/21

4/26/22

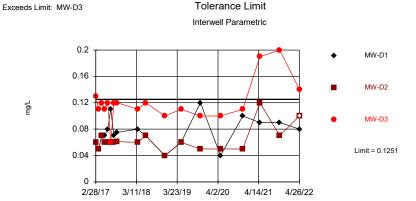
Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG Hollow symbols indicate censored values.

Within Limit

Tolerance Limit
Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Most recent observation is compared with limit. Limit is highest of 16 background values. 74.8% coverage at alpha=0.01; 83.01% coverage at alpha=0.05; 95.9% coverage at alpha=0.5. Report alpha = 0.4401.

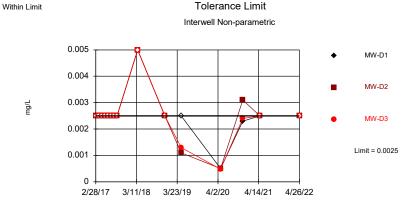
Constituent: Chromium Analysis Run 6/27/2022 5:20 PM View: Sanitas_Statistics Sampling Events 1 thro


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas $^{\text{\tiny{TM}}}$ v.9.6.32 Software licensed to Geosyntec Consultants. UG Hollow symbols indicate censored values.

Within Limit Tolerance Limit
Interwell Non-parametric

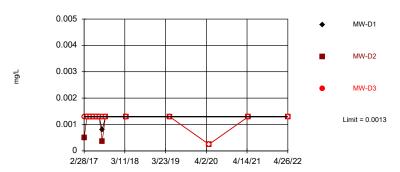
Non-parametric test used in lieu of parametric tolerance limit because the data required both a power transformation and Cohen's adjustment. Most recent observation is compared with limit. Limit is highest of 18 background values. 22.22% NDs. 77.54% coverage at alpha=0.01; 84.57% coverage at alpha=0.05; 96.29% coverage at alpha=0.5. Report alpha = 0.3972.



95% coverage. Most recent observation is compared with limit. Background Data Summary (based on square root transformation): Mean=0.2513, Std. Dev.=0.03522, n=18, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8756, critical = 0.8858. Report alpha = 0.010.

Constituent: Fluoride Analysis Run 6/27/2022 5:22 PM View: Sanitas_Statistics Sampling Events 1 throug

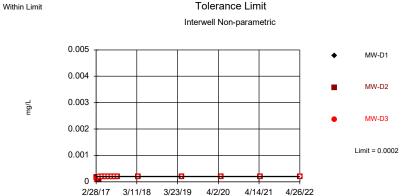
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


 $\mbox{Sanitas}^{\mbox{\tiny M}} \ v. 9.6.32 \ \mbox{Software licensed to Geosyntec Consultants. UG} \\ \mbox{Hollow symbols indicate censored values.}$

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Most recent observation is compared with limit. Limit is highest of 15 background values. 93.33% NDs. 73.63% coverage at alpha=0.01; 81.84% coverage at alpha=0.05; 95.51% coverage at alpha=0.5. Report alpha = 0.4633.

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG Hollow symbols indicate censored values.

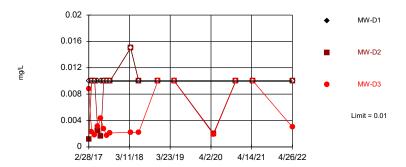
Within Limit Tolerance Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Most recent observation is compared with limit. Limit is highest of 13 background values. 92.31% NDs. 70.12% coverage at alpha=0.01; 79.49% coverage at alpha=0.05; 94.73% coverage at alpha=0.5. Report alpha = 0.5133.

Constituent: Lead Analysis Run 6/27/2022 5:22 PM View: Sanitas_Statistics Sampling Events 1 through 1

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

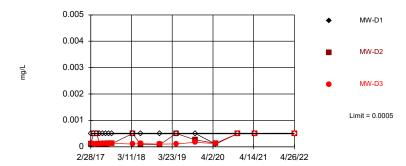

Sanitas $^{\text{TM}}$ v.9.6.32 Software licensed to Geosyntec Consultants. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Most recent observation is compared with limit. Limit is highest of 13 background values. 92.31% NDs. 70.12% coverage at alpha=0.01; 79.49% coverage at alpha=0.05; 94.73% coverage at alpha=0.5. Report alpha = 0.5133.

Within Limit

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Most recent observation is compared with limit. All background values were censored; limit is most recent reporting limit. 74.8% coverage at alpha=0.01; 83.01% coverage at alpha=0.05. Report alpha = 0.4401.


Constituent: Molybdenum Analysis Run 6/27/2022 5:23 PM View: Sanitas_Statistics Sampling Events 1 th

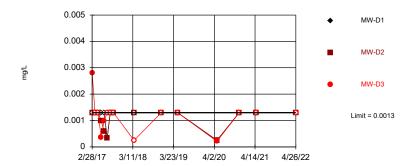
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas $^{\rm tu}$ v.9.6.32 Software licensed to Geosyntec Consultants. UG Hollow symbols indicate censored values.

Within Limit

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Most recent observation is compared with limit. All background values were censored; limit is most recent reporting limit. 76.37% coverage at alpha=0.01; 83.79% coverage at alpha=0.05. Report alpha = 0.4181.


Constituent: Thallium Analysis Run 6/27/2022 5:24 PM View: Sanitas_Statistics Sampling Events 1 throug

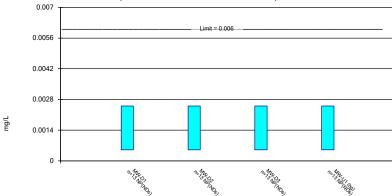
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG Hollow symbols indicate censored values.

Within Limit

Tolerance Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Most recent observation is compared with limit. Limit is highest of 15 background values. 53.33% NDs. 73.63% coverage at alpha=0.01; 81.84% coverage at alpha=0.05; 95.51% coverage at alpha=0.5. Report alpha = 0.4633.

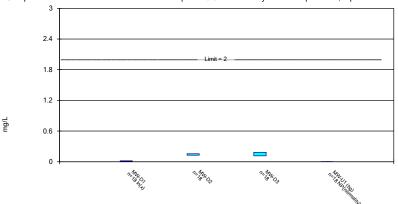

Constituent: Selenium Analysis Run 6/27/2022 5:23 PM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Tolerance Limit

	CCPC Plant Crisp Ash Pond Site		Client: Geosyntec	Data: Sanitas_Stat	istics Sam	pling Eve	ents 1 through	n 10 Printed 6/29/20	Printed 6/29/2022, 2:10 PM	
Constituent	<u>Well</u>	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.0025	n/a	n/a	n/a	13	100	n/a	0.5133	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.0019	n/a	n/a	n/a	18	77.78	n/a	0.3972	NP Inter(NDs)
Barium (mg/L)	n/a	0.0062	n/a	n/a	n/a	18	0	n/a	0.3972	NP Inter(normal
Beryllium (mg/L)	n/a	0.002	n/a	n/a	n/a	13	100	n/a	0.5133	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.001	n/a	n/a	n/a	14	100	n/a	0.4877	NP Inter(NDs)
Chromium (mg/L)	n/a	0.0051	n/a	n/a	n/a	16	0	n/a	0.4401	NP Inter(normal
Cobalt (mg/L)	n/a	0.0025	n/a	n/a	n/a	17	100	n/a	0.4181	NP Inter(NDs)
Combined Radium 226 + 228 (pCi/L)	n/a	5	n/a	n/a	n/a	18	22.22	n/a	0.3972	NP Inter(Cohens
Fluoride (mg/L)	n/a	0.1251	n/a	n/a	n/a	18	11.11	sqrt(x)	0.01	Inter
Lead (mg/L)	n/a	0.0013	n/a	n/a	n/a	13	92.31	n/a	0.5133	NP Inter(NDs)
Lithium (mg/L)	n/a	0.0025	n/a	n/a	n/a	15	93.33	n/a	0.4633	NP Inter(NDs)
Mercury (mg/L)	n/a	0.0002	n/a	n/a	n/a	13	92.31	n/a	0.5133	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.01	n/a	n/a	n/a	16	100	n/a	0.4401	NP Inter(NDs)
Selenium (mg/L)	n/a	0.0013	n/a	n/a	n/a	15	53.33	n/a	0.4633	NP Inter(normal
Thallium (mg/L)	n/a	0.0005	n/a	n/a	n/a	17	100	n/a	0.4181	NP Inter(NDs)

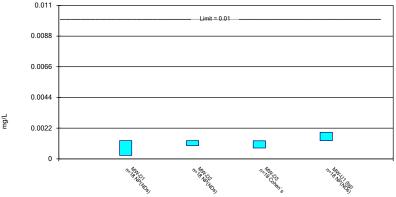
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Antimony Analysis Run 6/27/2022 6:12 PM View: Sanitas Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

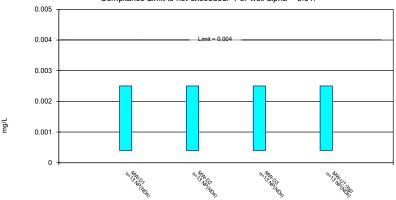
Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG


Parametric and Non-Parametric (NP) Confidence Interval

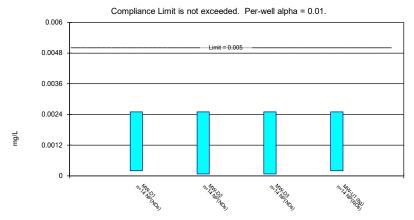
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Arsenic Analysis Run 6/27/2022 6:12 PM View: Sanitas Statistics Sampling Events 1 through CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

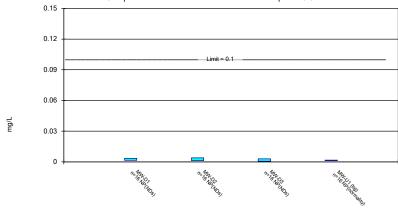

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Non-Parametric Confidence Interval

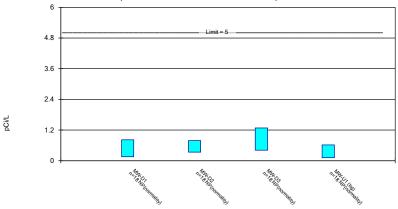
Constituent: Cadmium Analysis Run 6/29/2022 9:20 AM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

Parametric and Non-Parametric (NP) Confidence Interval

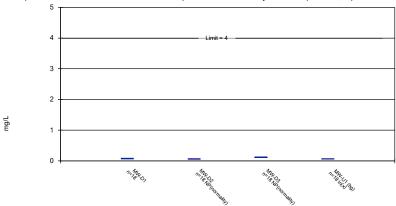
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.


Constituent: Chromium Analysis Run 6/29/2022 9:20 AM View: Sanitas_Statistics Sampling Events 1 thro

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Parametric and Non-Parametric (NP) Confidence Interval

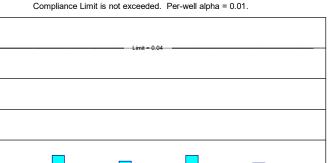
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride Analysis Run 6/29/2022 9:21 AM View: Sanitas_Statistics Sampling Events 1 throug

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

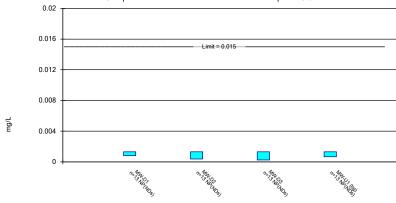
Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

0.05


0.04

0.03

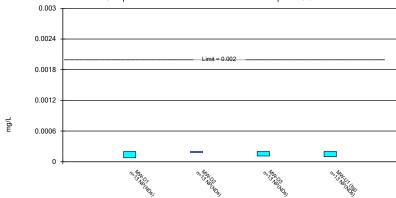
0.02


0.01

Non-Parametric Confidence Interval

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.


Constituent: Lead Analysis Run 6/29/2022 9:22 AM View: Sanitas_Statistics Sampling Events 1 through 1

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.15

0.12

0.09

0.06

0.03

Constituent: Molybdenum Analysis Run 6/29/2022 9:23 AM View: Sanitas_Statistics Sampling Events 1 th

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

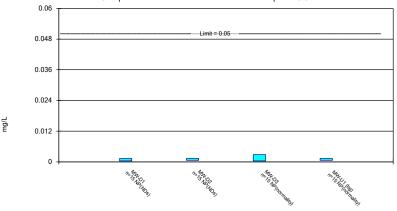
0.003

0.0024

0.0018

0.0012

0.0006

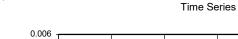

Constituent: Thallium Analysis Run 6/29/2022 9:24 AM View: Sanitas_Statistics Sampling Events 1 throug

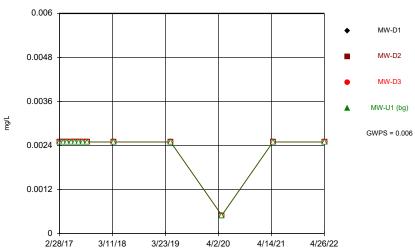
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

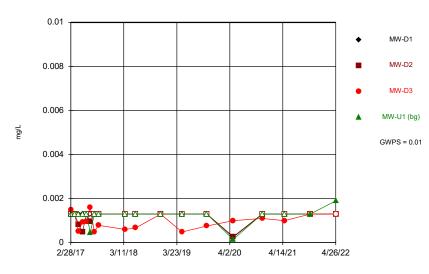

Constituent: Selenium Analysis Run 6/29/2022 9:24 AM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Confidence Interval

	CCPC Plant Crisp Ash Pond Site			Client: Ge	eosyntec Data:	Sanitas	s_Stati	stics Sampling Events 1 through	25 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Complian	ice Lower Compl.	Sig.	<u>N</u>	Mean Std. Dev. %NDs	ND Adj.	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-D1	0.0025	0.0005	0.006	n/a	No	13	0.002346 0.0005547 100	None	No	0.01	NP (NDs)
Antimony (mg/L)	MW-D2	0.0025	0.0005	0.006	n/a	No	13	0.002346 0.0005547 100	None	No	0.01	NP (NDs)
Antimony (mg/L)	MW-D3	0.0025	0.0005	0.006	n/a	No	13	0.002346 0.0005547 100	None	No	0.01	NP (NDs)
Antimony (mg/L)	MW-U1 (bg)	0.0025	0.0005	0.006	n/a	No	13	0.002346 0.0005547 100	None	No	0.01	NP (NDs)
Arsenic (mg/L)	MW-D1	0.0013	0.00025	0.01	n/a	No	18	0.001242 0.0002475 100	None	No	0.01	NP (NDs)
Arsenic (mg/L)	MW-D2	0.0013	0.00095	0.01	n/a	No	18	0.001152 0.0003144 77.78	None	No	0.01	NP (NDs)
Arsenic (mg/L)	MW-D3	0.001296	0.000776	0.01	n/a	No	18	0.000 0.0003531 22.22	Cohen's	No	0.01	Param.
Arsenic (mg/L)	MW-U1 (bg)	0.0019	0.0013	0.01	n/a	No	18	0.001223 0.0003663 77.78	Cohen's	No	0.01	NP (NDs)
Barium (mg/L)	MW-D1	0.01668	0.01145	2	n/a	No	18	0.01452 0.00507 0	None	ln(x)	0.01	Param.
Barium (mg/L)	MW-D2	0.1554	0.1265	2	n/a	No	18	0.1409 0.02388 0	None	No	0.01	Param.
Barium (mg/L)	MW-D3	0.1843	0.1148	2	n/a	No	18	0.1496 0.0574 0	None	No	0.01	Param.
Barium (mg/L)	MW-U1 (bg)	0.0026	0.002	2	n/a	No	18	0.002528 0.001004 0	None	No	0.01	NP (normality)
Beryllium (mg/L)	MW-D1	0.0025	0.0004	0.004	n/a	No	13	0.001915 0.0004758 100	None	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-D2	0.0025	0.0004	0.004	n/a	No	13	0.001915 0.0004758 100	None	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-D3	0.0025	0.0004	0.004	n/a	No	13	0.001915 0.0004758 100	None	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-U1 (bg)	0.0025	0.0004	0.004	n/a	No	13	0.001915 0.0004758 100	None	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-D1	0.0025	0.0002	0.005	n/a	No	14	0.00105 0.0004686 100	None	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-D2	0.0025	0.000075	0.005	n/a	No	14	0.001041 0.0004869 92.86	None	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-D3	0.0025	0.000071	0.005	n/a	No	14	0.001041 0.0004875 92.86	None	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-U1 (bg)	0.0025	0.0002	0.005	n/a	No	14	0.00105 0.0004686 100	None	No	0.01	NP (NDs)
Chromium (mg/L)	MW-D1	0.0034	0.0015	0.1	n/a	No	16	0.002369 0.0006074 87.5	None	No	0.01	NP (NDs)
Chromium (mg/L)	MW-D2	0.0038	0.0012	0.1	n/a	No	16	0.002375 0.0006894 87.5	None	No	0.01	NP (NDs)
Chromium (mg/L)	MW-D3	0.0029	0.0005	0.1	n/a	No	16	0.0024 0.0005164 93.75	None	No	0.01	NP (NDs)
Chromium (mg/L)	MW-U1 (bg)	0.0017	0.0012	0.1	n/a	No	16	0.001688 0.0009749 0	None	No	0.01	NP (normality)
Cobalt (mg/L)	MW-D1	0.0025	0.0005	0.006	n/a	No	17	0.002382 0.0004851 100	None	No	0.01	NP (NDs)
Cobalt (mg/L)	MW-D2	0.0025	0.001	0.006	n/a	No	17	0.002292 0.0005936 88.24	None	No	0.01	NP (NDs)
Cobalt (mg/L)	MW-D3	0.001665	0.0009601	0.006	n/a	No	17	0.001312 0.0005622 11.76	None	No	0.01	Param.
Cobalt (mg/L)	MW-U1 (bg)	0.0025	0.0005	0.006	n/a	No	17	0.002265 0.0006642 100	None	No	0.01	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	MW-D1	0.816	0.156	5	n/a	No	18	0.9254 1.502 22.22	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-D2	0.783	0.333	5	n/a	No	18	0.7815 1.092 22.22	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-D3	1.28	0.409	5	n/a	No	18	1.32 1.717 27.78	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-U1 (bg)	0.614	0.117	5	n/a	No	18	0.5585 1.134 22.22	None	No	0.01	NP (normality)
Fluoride (mg/L)	MW-D1	0.08842	0.06213	4	n/a	No	18	0.07528 0.02173 0	None	No	0.01	Param.
Fluoride (mg/L)	MW-D2	0.07	0.05	4	n/a	No	18	0.06394 0.01882 5.556	None	No	0.01	NP (normality)
Fluoride (mg/L)	MW-D3	0.13	0.1	4	n/a	No	18	0.1206 0.03171 0	None	No	0.01	NP (normality)
Fluoride (mg/L)	MW-U1 (bg)	0.07317	0.05261	4	n/a	No	18	0.06433 0.01858 11.11	None	ln(x)	0.01	Param.
Lead (mg/L)	MW-D1	0.0013	0.0008	0.015	n/a	No	13	0.001181 0.0003119 92.31	None	No	0.01	NP (NDs)
Lead (mg/L)	MW-D2	0.0013	0.00037	0.015	n/a	No	13	0.001086 0.0004096 84.62	None	No	0.01	NP (NDs)
Lead (mg/L)	MW-D3	0.0013	0.00025	0.015	n/a	No	13	0.001219 0.0002912 100	None	No	0.01	NP (NDs)
Lead (mg/L)	MW-U1 (bg)	0.0013	0.00065	0.015	n/a	No	13	0.001169 0.0003295 92.31	None	No	0.01	NP (NDs)
Lithium (mg/L)	MW-D1	0.005	0.0023	0.04	n/a	No	15	0.00252 0.0008571 93.33	None	No	0.01	NP (NDs)
Lithium (mg/L)	MW-D2	0.0031	0.0011	0.04	n/a	No	15	0.00248 0.0009473 86.67	None	No	0.01	NP (NDs)
Lithium (mg/L)	MW-D3	0.005	0.0024	0.04	n/a	No	15	0.002445 0.0009156 80	None	No	0.01	NP (NDs)
Lithium (mg/L)	MW-U1 (bg)	0.0025	0.0005	0.04	n/a	No	15	0.002223 0.0007325 93.33	None	No	0.01	NP (NDs)
Mercury (mg/L)	MW-D1	0.0002	0.000077	0.002	n/a	No	13	0.000 0.0000 92.31	None	No	0.01	NP (NDs)
Mercury (mg/L)	MW-D2	0.0002	0.00018	0.002	n/a	No	13	0.000 0.0000 84.62	None	No	0.01	NP (NDs)
Mercury (mg/L)	MW-D3	0.0002	0.00011	0.002	n/a	No	13	0.000 0.0000 92.31	None	No	0.01	NP (NDs)
Mercury (mg/L)	MW-U1 (bg)	0.0002	0.000099	0.002	n/a	No	13	0.000 0.0000 92.31	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	MW-D1	0.015	0.002	0.1	n/a	No	16	0.009812 0.002428 100	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	MW-D2	0.015	0.002	0.1	n/a	No	16	0.008269 0.004044 81.25	None	No	0.01	NP (NDs)
, , , ,												. ,

Confidence Interval

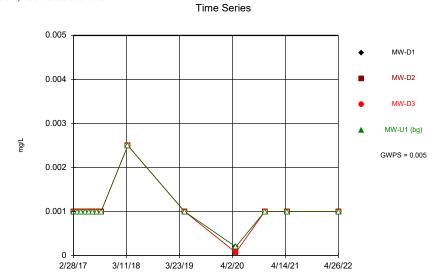
	CCP	CCPC Plant Crisp Ash Pond Site		Client: Geos	Client: Geosyntec Data: Sanitas_Statistics Sa					1 through	10 Print	ted 6/29/2022, 9:2	25 AM	
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Lower Compl.	Sig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	ND Adj.	<u>Transform</u>	<u>Alpha</u>	Method
Molybdenum (mg/L)	MW-D3	0.01	0.0019	0.1	n/a	No	16	0.004756	0.00355	25	None	No	0.01	NP (normality)
Molybdenum (mg/L)	MW-U1 (bg)	0.01	0.003	0.1	n/a	No	16	0.009062	0.002568	100	None	No	0.01	NP (NDs)
Selenium (mg/L)	MW-D1	0.0013	0.00033	0.05	n/a	No	15	0.001165	0.0003557	93.33	None	No	0.01	NP (NDs)
Selenium (mg/L)	MW-D2	0.0013	0.00059	0.05	n/a	No	15	0.001098	0.0003804	80	None	No	0.01	NP (NDs)
Selenium (mg/L)	MW-D3	0.0028	0.00037	0.05	n/a	No	15	0.001175	0.0006131	73.33	None	No	0.01	NP (normality)
Selenium (mg/L)	MW-U1 (bg)	0.0013	0.00058	0.05	n/a	No	15	0.000	0.0003819	53.33	None	No	0.01	NP (normality)
Thallium (mg/L)	MW-D1	0.0005	0.0001	0.002	n/a	No	17	0.000	0.0000	100	None	No	0.01	NP (NDs)
Thallium (mg/L)	MW-D2	0.0005	0.00011	0.002	n/a	No	17	0.000	0.0001939	41.18	None	No	0.01	NP (normality)
Thallium (mg/L)	MW-D3	0.00017	0.0001	0.002	n/a	No	17	0.000185	0.0001512	17.65	None	No	0.01	NP (normality)
Thallium (mg/L)	MW-U1 (bg)	0.0005	0.0001	0.002	n/a	No	17	0.000	0.0000	100	None	No	0.01	NP (NDs)


Constituent: Antimony Analysis Run 6/29/2022 9:34 AM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

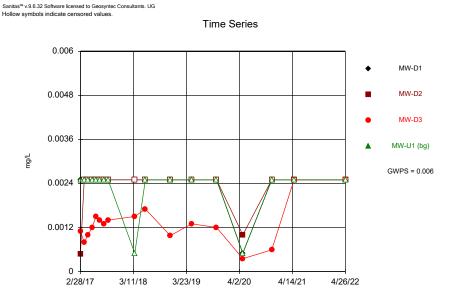
Time Series 2 MW-D1 MW-D2 1.6 MW-D3 1.2 MW-U1 (bg) GWPS = 2 0.8 0.4 2/28/17 3/11/18 3/23/19 4/2/20 4/14/21 4/26/22

Constituent: Barium Analysis Run 6/29/2022 9:37 AM View: Sanitas_Statistics Sampling Events 1 through

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

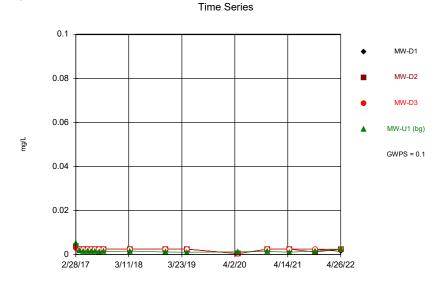

Constituent: Arsenic Analysis Run 6/29/2022 9:37 AM View: Sanitas_Statistics Sampling Events 1 through

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG Hollow symbols indicate censored values.

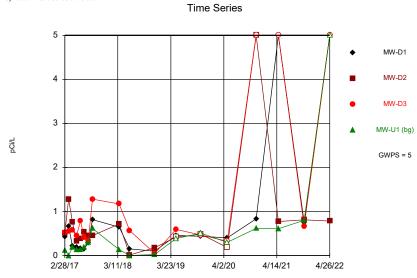
Time Series 0.005 MW-D1 MW-D2 0.004 MW-D3 0.003 MW-U1 (bg) mg/L GWPS = 0.0040.002 0.001 2/28/17 3/11/18 3/23/19 4/2/20 4/14/21 4/26/22

Constituent: Beryllium Analysis Run 6/29/2022 9:38 AM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



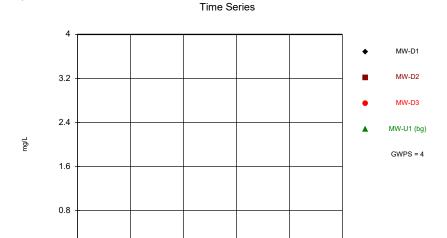
Constituent: Cadmium Analysis Run 6/29/2022 9:40 AM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Cobalt Analysis Run 6/29/2022 9:41 AM View: Sanitas_Statistics Sampling Events 1 through


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas Statistics Sampling Events 1 through 10

Constituent: Chromium Analysis Run 6/29/2022 9:40 AM View: Sanitas_Statistics Sampling Events 1 thro

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



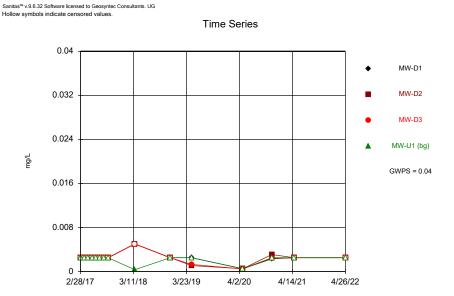
Constituent: Combined Radium 226 + 228 Analysis Run 6/29/2022 9:41 AM View: Sanitas_Statistics Sam

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

2/28/17

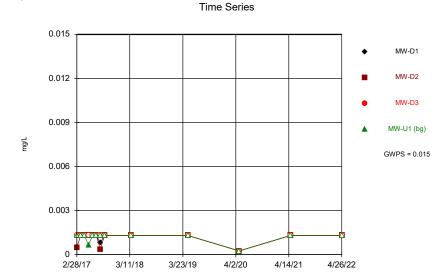
3/11/18

Constituent: Fluoride Analysis Run 6/29/2022 9:42 AM View: Sanitas_Statistics Sampling Events 1 throug


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

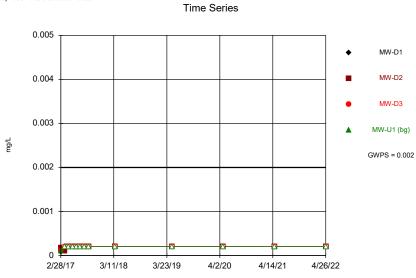
4/2/20

4/14/21

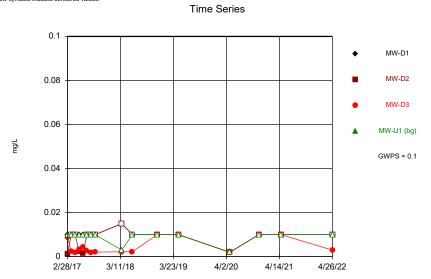

4/26/22

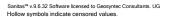
3/23/19

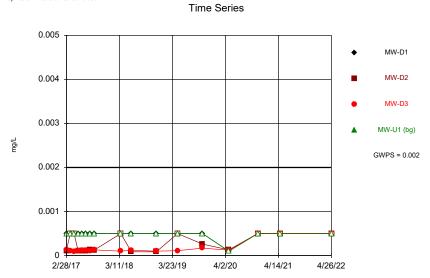
Constituent: Lithium Analysis Run 6/29/2022 9:44 AM View: Sanitas_Statistics Sampling Events 1 through


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Lead Analysis Run 6/29/2022 9:44 AM View: Sanitas_Statistics Sampling Events 1 through 1

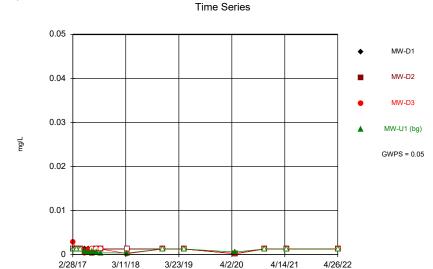

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Mercury Analysis Run 6/29/2022 9:44 AM View: Sanitas_Statistics Sampling Events 1 throug


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Molybdenum Analysis Run 6/29/2022 9:45 AM View: Sanitas_Statistics Sampling Events 1 th

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



Constituent: Thallium Analysis Run 6/29/2022 9:45 AM View: Sanitas_Statistics Sampling Events 1 throug

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.32 Software licensed to Geosyntec Consultants. UG Hollow symbols indicate censored values.

Constituent: Selenium Analysis Run 6/29/2022 9:45 AM View: Sanitas_Statistics Sampling Events 1 throu CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10